PRESS-NEWS.org - Press Release Distribution
PRESS RELEASES DISTRIBUTION

Stem cells used to model disease that causes abnormal bone growth

UCSF-led study sheds light on muscle-to-bone transformation

2014-01-08
(Press-News.org) Contact information: Jeffrey Norris
jeffrey.norris@ucsf.edu
415-502-6397
University of California - San Francisco
Stem cells used to model disease that causes abnormal bone growth UCSF-led study sheds light on muscle-to-bone transformation Researchers have developed a new way to study bone disorders and bone growth, using stem cells from patients afflicted with a rare, genetic bone disease. The approach, based on Nobel-Prize winning techniques, could illuminate the illness, in which muscles and tendons progressively turn into bone, and addresses the similar destructive process that afflicts a growing number of veterans who have suffered blast injuries — including traumatic amputations or injuries to the brain and nervous system. This insidious hardening of tissues also grips some patients following joint replacement or severe bone injuries.

The disease model, described in a new study by a UC San Francisco-led team, involves taking skin cells from patients with the bone disease, reprogramming them in a lab dish to their embryonic state, and deriving stem cells from them.

Once the team derived the stem cells, they identified a cellular mechanism that drives abnormal bone growth in the thus-far untreatable bone disease, called fibrodysplasia ossificans progressiva (FOP). Furthermore, they found that certain chemicals could slow abnormal bone growth in the stem cells, a discovery that might help guide future drug development.

Clinically, the genetic and trauma-caused conditions are very similar, with bone formation in muscle leading to pain and restricted movement, according to the leader of the new study, Edward Hsiao, MD, PhD, an endocrinologist who cares for patients with rare and unusual bone diseases at the UCSF Metabolic Bone Clinic in the Division of Endocrinology and Metabolism.

The human cell-based disease model is expected to lead to a better understanding of these disorders and other illnesses, Hsiao said.

"The new FOP model already has shed light on the disease process in FOP by showing that the mutated gene can affect different steps of bone formation," Hsiao said. "These different stages represent potential targets for limiting or stopping the progression of the disease, and may also be useful for blocking abnormal bone formation in other conditions besides FOP. The human stem-cell lines we developed will be useful for identifying drugs that target the bone-formation process in humans," Hsiao said.

The team's development of, and experimentation with, the human stem-cell disease model for FOP, published in the December issue of the Orphanet Journal of Rare Diseases, is a realization of the promise of research using stem cells of the type known as induced pluripotent stem (iPS) cells, immortal cells of nearly limitless potential, derived not from embryos, but from adult tissues.

Shinya Yamanaka, MD, PhD, a UCSF professor of anatomy and a senior investigator with the UCSF-affiliated Gladstone Institutes, as well as the director of the Center for iPS Cell Research and Application (CiRA) and a principal investigator at Kyoto University, shared the Nobel Prize in 2012 for discovering how to make iPS cells from skin cells using a handful of protein "factors." These factors guide a reprogramming process that reverts the cells to an embryonic state, in which they have the potential to become virtually any type of cell.

Because injuries and surgeries can trigger rapid bone formation in FOP patients, obtaining tissue samples for extensive lab study is extremely difficult. Human iPS cells provide a unique solution by allowing the creation of the needed tissues in the lab. Hsiao and colleagues carefully gathered skin samples from donors, and then grew the skin cells in culture before converting them into iPS cells using the methods created by Yamanaka.

In addition to providing an alternative to embryonic stem cells for potential use in regenerating diseased tissues, iPS cells are being used to learn more about diseases, especially diseases driven by mutated genes.

Unlike the skin cells from which they originated, the human iPS cells created from FOP patients show increased cartilage formation and increased bone mineralization, two critical steps that are necessary to form mature bone. Bone morphogenetic proteins (BMPs) play a central role in the bone formation within muscle. FOP results from a gene mutation that causes a defect in the receptor protein to which BMPs bind, thereby increasing bone formation.

"These cells will be a key tool for finding ways to stimulate and control human bone growth for regenerative medicine or bone repair," Hsiao said. "The iPS cells may also help us identify treatments for more common diseases, such as atherosclerosis and vascular calcification, because the same bone morphogenetic protein pathways are involved in these medical conditions."

### The work was a joint effort between Hsiao's lab group at UCSF; Bruce Conklin, MD, PhD, Hsiao's former postdoctoral mentor at the UCSF-affiliated Gladstone Institutes; and a research team at Kyoto University, led by Makoto Ikeya, PhD, and Junya Toguchida, MD, PhD. The research was supported by the National Institutes of Health, the California Institute for Regenerative Medicine, the March of Dimes, and the Ministry of Education, Culture, Sports, Science, and Technology of Japan.

UCSF is a leading university dedicated to promoting health worldwide through advanced biomedical research, graduate-level education in the life sciences and health professions, and excellence in patient care. It includes top-ranked graduate schools of dentistry, medicine, nursing and pharmacy, a graduate division with nationally renowned programs in basic biomedical, translational and population sciences, as well as a preeminent biomedical research enterprise and two top-ranked hospitals, UCSF Medical Center and UCSF Benioff Children's Hospital.


ELSE PRESS RELEASES FROM THIS DATE:

Color-coded cells reveal patchwork patterns of X chromosome silencing in female brains

2014-01-08
Color-coded cells reveal patchwork patterns of X chromosome silencing in female brains Producing brightly speckled red and green snapshots of many different tissues, Johns Hopkins researchers have color-coded cells in female mice to display which of their two X chromosomes ...

Roche reports new method for efficiently transporting antibodies across the blood-brain barrier

2014-01-08
Roche reports new method for efficiently transporting antibodies across the blood-brain barrier Results published in Neuron demonstrate efficacy in preclinical mouse models of Alzheimer's disease Today the scientific journal Neuron published results on the Roche-designed ...

An improved, cost-effective catalyst for water-splitting devices

2014-01-08
An improved, cost-effective catalyst for water-splitting devices Solar energy appears to be the only form of renewable that can be exploited at level that matches the world's growing needs. However, it is equally necessary to find efficient ways to store ...

New research: Effects of eating half an avocado with lunch on satiety & desire to eat between meals

2014-01-08
New research: Effects of eating half an avocado with lunch on satiety & desire to eat between meals Loma Linda University study explores the relationship between avocado consumption, satiety and blood sugar IRVINE, Calif. (DATE) – New research published in the ...

LA BioMed study finds daily antibiotics most effective in preventing recurrent urinary tract infection

2014-01-08
LA BioMed study finds daily antibiotics most effective in preventing recurrent urinary tract infection Cranberry pills, estrogen and acupuncture also found to be helpful LOS ANGELES (Jan. 8, 2014) – While ...

Researchers propose alternative way to allocate science funding

2014-01-08
Researchers propose alternative way to allocate science funding Researchers in the United States have suggested an alternative way to allocate science funding. The method, which is described in EMBO reports, depends on a collective distribution of funding by ...

Medicine protects against strokes

2014-01-08
Medicine protects against strokes It is well-known that anticoagulant medicine assists in the prevention of strokes. A large Danish study now shows that the medicine can also reduce the risk of death and brain damage when a stroke happens ...

Seniors moving to HCBS face more hospital risk

2014-01-08
Seniors moving to HCBS face more hospital risk PROVIDENCE, R.I. [Brown University] — Seniors want greater access to home- and community-based long-term care services. Medicaid policymakers have been happy to oblige with new programs to help people move out of expensive ...

Chemical imaging brings cancer tissue analysis into the digital age

2014-01-08
Chemical imaging brings cancer tissue analysis into the digital age A new method for analysing biological samples based on their chemical makeup is set to transform the way medical scientists examine diseased tissue. When tests are carried out on a patient's tissue ...

Climate change: How does soil store CO2?

2014-01-08
Climate change: How does soil store CO2? Carbon content in soil influences climate models Previous studies have established that carbon binds to tiny mineral particles. In this latest study, published in Nature Communications, researchers have shown ...

LAST 30 PRESS RELEASES:

New perspective highlights urgent need for US physician strike regulations

An eye-opening year of extreme weather and climate

Scientists engineer substrates hostile to bacteria but friendly to cells

New tablet shows promise for the control and elimination of intestinal worms

Project to redesign clinical trials for neurologic conditions for underserved populations funded with $2.9M grant to UTHealth Houston

Depression – discovering faster which treatment will work best for which individual

Breakthrough study reveals unexpected cause of winter ozone pollution

nTIDE January 2025 Jobs Report: Encouraging signs in disability employment: A slow but positive trajectory

Generative AI: Uncovering its environmental and social costs

Lower access to air conditioning may increase need for emergency care for wildfire smoke exposure

Dangerous bacterial biofilms have a natural enemy

Food study launched examining bone health of women 60 years and older

CDC awards $1.25M to engineers retooling mine production and safety

Using AI to uncover hospital patients’ long COVID care needs

$1.9M NIH grant will allow researchers to explore how copper kills bacteria

New fossil discovery sheds light on the early evolution of animal nervous systems

A battle of rafts: How molecular dynamics in CAR T cells explain their cancer-killing behavior

Study shows how plant roots access deeper soils in search of water

Study reveals cost differences between Medicare Advantage and traditional Medicare patients in cancer drugs

‘What is that?’ UCalgary scientists explain white patch that appears near northern lights

How many children use Tik Tok against the rules? Most, study finds

Scientists find out why aphasia patients lose the ability to talk about the past and future

Tickling the nerves: Why crime content is popular

Intelligent fight: AI enhances cervical cancer detection

Breakthrough study reveals the secrets behind cordierite’s anomalous thermal expansion

Patient-reported influence of sociopolitical issues on post-Dobbs vasectomy decisions

Radon exposure and gestational diabetes

EMBARGOED UNTIL 1600 GMT, FRIDAY 10 JANUARY 2025: Northumbria space physicist honoured by Royal Astronomical Society

Medicare rules may reduce prescription steering

Red light linked to lowered risk of blood clots

[Press-News.org] Stem cells used to model disease that causes abnormal bone growth
UCSF-led study sheds light on muscle-to-bone transformation