(Press-News.org) Contact information: Marité Cardenas
46-708-442-394
University of Copenhagen
World's tiniest drug cabinets could be attached to cancerous cells for long term treatment
Novel method for slow release drugs
As if being sick weren't bad enough, there's also the fear of frequent injections, side effects and overdosing on you medication. Now a team of researchers from University of Copenhagen, Department of Chemistry, Nano- science center and the Institut Laue-Langevin (ILL), have shown that reservoirs of anti-viral pharmaceuticals could be manufactured to bind specifically to infected tissue such as cancer cells for the slow concentrated delivery of drug treatments.
The new research is published in ACS Macro Letters.
The findings, from Dr Marité Cárdenas (Copenhagen) and Dr Richard Campbell and Dr Erik Watkins (ILL), came as a result of neutron reflectometry studies at the world's leading neutron source in Grenoble, France. They could provide a way to reduce dosages and the frequency of injections administered to patients undergoing a wide variety of treatments, as well as minimising side effects of over-dosing.
The attachment of reservoirs of therapeutic drugs to cell membranes for slow diffusion and continuous delivery inside the cells is a major aim in drug R&D. A promising candidate for packaging up and carrying such concoctions of drugs are a group of self-assembled liquid crystalline particles. Composed of fatty molecules known as phospholipids and tree-like macromolecules called dendrimers which have many branches, the particles form spontaneously and have the capacity to soak up and carry large quantities of drug molecules for prolonged diffusion. They are also known for their ability to bind to cellular membranes.
The first treatments using such particles are close to market through products incorporating a similar formulation called Cubosomes (cubic phase nanoparticles). Developed and commercialized by Swedish start-up Camarus Ab, its FluidCrystal® nanoparticles promise months of drug delivery from a single injection and the possibility of tuning the delivery to intervals of anything from daily to once monthly. However, a key requirement for optimal application of these formulations is a detailed understanding of how they interact with cellular membranes.
This was the focus of work involving a collaboration between Dr Marité Cárdenas (Copenhagen) and Dr Richard Campbell and Dr Erik Watkins (ILL). In this experiment the team used neutrons to analyse the interaction of the liquid crystalline particles with a model cellular membrane whilst varying two parameters:
Gravity – to see how the interaction changed if the aggregates attacked the cell membrane from below as opposed to above
Electrostatics – how the balance between the contrasting positive and negative charges of the aggregate and membrane affect the interaction
The team utilised a technique known as neutron reflectometry whereby beams of neutrons are skimmed off a surface and the reflectivity measured is used to infer detailed information about the surface, including the thickness, detailed structure and composition of any layers beneath. These experiments were carried out on the FIGARO instrument at the ILL in Grenoble which offers unique reflection up vs. down modes that allowed the team to examine the top and bottom surfaces, alternating the samples on a two hourly basis during a 30 hour sampling period.
The interaction of the liquid crystalline particles with the membrane was shown to be driven by the charge on the mode cell wall. Subtle changes in the amount of negative charge on the membrane wall encouraged the tree-like dendrimer molecules to penetrate through allowing the rest of the molecule to bind to the surface, forming an attached reservoir. The sensitivity of the interaction to small changes in charge suggests that simple adjustments to the proportion of charged lipids and macromolecules could optimise this process. In the future this characteristic could also provide a mechanism to focus the treatment at targeted cells such as those infected by cancer which are thought to have a more negative charge density than healthy cells.
In terms of gravitational affects the analysis also showed that the aggregates interacted preferentially with membranes only when they were located above the sample. Similar effects caused by the different density and buoyancy of solutions is already exploited in some stomach treatments and the researchers would encourage future studies into how gravitational effects could be used to optimise these interactions for drug delivery.
Quotes
"Cancerous cells have an imbalance that gives them a different molecular composition and overall different physical properties to normal healthy cells", explains Dr Cardenas. "Whilst all cells are negative, cancerous cells tend to be more negatively charged than healthy ones due to a different composition of fatty molecules on their surface. This is a property that we believe could be exploited in future research into delivery mechanisms involving the attachment of lamellar liquid crystalline particles. Our next step is to introduce the drug itself into the reservoirs and make sure it can move across the membrane. This work paves the way for cell tests and clinical trials in the future exploiting our methodology"
"Of course it's not new that particles in formulations can sink or float, but such dramatically different specific interactions of these nanocarriers with model membranes of different orientations took us completely by surprise" said Dr Campbell. "Very small sample volumes are often used in biomedical investigations so the effects of phase separation cannot be seen. Our findings suggest that laboratory researchers may need to re-evaluate the way in which they examine the effectiveness of newly developed formulations to account for strong gravitational effects."
Dr Watkins further commented: "This study is a perfect illustration of FIGARO's unique capability to take data from above and below horizontal interfaces in the same experiment. Not only are neutrons uniquely sensitive to the lighter elements found in organic chemistry but the ability to take all the data at once in situ without disturbing the sample is vital. These biological samples are always subtlety changing throughout the time you are analysing them so it's vital that you can take this data as quickly as possible."
INFORMATION:
World's tiniest drug cabinets could be attached to cancerous cells for long term treatment
Novel method for slow release drugs
2014-01-15
ELSE PRESS RELEASES FROM THIS DATE:
Microbes swap for tiny goods in minuscule markets, researchers find
2014-01-15
Microbes swap for tiny goods in minuscule markets, researchers find
A closer look at microbes reveals there is big business going on in their very small world, and sometimes we are part of the transaction.
An international team of researchers, including ...
NASA sees Tropical Cyclone Colin coming 'unwound'
2014-01-15
NASA sees Tropical Cyclone Colin coming 'unwound'
Tropical Cyclone Colin is not as tightly wrapped as it was a day ago. Satellite imagery from NASA's Aqua and TRMM satellites show Colin is not as organized as it was, and most of the strongest precipitation was occurring ...
New patent mapping system helps find innovation pathways
2014-01-15
New patent mapping system helps find innovation pathways
What's likely to be the "next big thing?" What might be the most fertile areas for innovation? Where should countries and companies invest their limited research funds? What technology areas are a company's ...
Top scientists ask UN leaders to act on nuclear weapons, climate change
2014-01-15
Top scientists ask UN leaders to act on nuclear weapons, climate change
Bulletin of the Atomic Scientists: It is still 5 minutes to midnight and much too close to doomsday
The Science and Security Board of the Bulletin of Atomic Scientists today called on the ...
Bacterial 'syringe' necessary for marine animal development
2014-01-15
Bacterial 'syringe' necessary for marine animal development
If you've ever slipped on a slimy wet rock at the beach, you have bacteria to thank. Those bacteria, nestled in a supportive extracellular matrix, form bacterial biofilms—often slimy substances ...
Researchers identify key components linking circadian rhythms and cell division cycles
2014-01-15
Researchers identify key components linking circadian rhythms and cell division cycles
CINCINNATI—Researchers at the University of Cincinnati (UC) have identified key molecular components linking circadian rhythms and cell division cycles ...
In dyslexia, less brain tissue not to blame for reading difficulties
2014-01-15
In dyslexia, less brain tissue not to blame for reading difficulties
WASHINGTON — In people with dyslexia, less gray matter in the brain has been linked to reading disabilities, but now new evidence suggests this is a consequence of poorer reading experiences and ...
Should we make a film that audiences enjoy or nab an Oscar nomination?
2014-01-15
Should we make a film that audiences enjoy or nab an Oscar nomination?
UCLA researchers reveal the logic behind the tough decisions studios make
What do Hollywood moguls holding their breath this week for an Oscar nomination have in common with ...
Seafloor, sea-level, shear zones, subduction, sedimentation, and seismology
2014-01-15
Seafloor, sea-level, shear zones, subduction, sedimentation, and seismology
New Geology articles posted online ahead of print Jan. 10, 2014
Boulder, Colo., USA – Geology adds 19 new articles online, covering locations in China, the Atacama Desert, the Himalaya, Kilauea volcano, ...
Wild sparrow study traces social behaviors in the field to specific gene
2014-01-15
Wild sparrow study traces social behaviors in the field to specific gene
A unique study of the white-throated sparrow has identified a biological pathway connecting variation in the birds' aggression and parenting behaviors in the wild to variation in their genome.
The ...
LAST 30 PRESS RELEASES:
Identification of chemical constituents and blood-absorbed components of Shenqi Fuzheng extract based on UPLC-triple-TOF/MS technology
'Glass fences' hinder Japanese female faculty in international research, study finds
Vector winds forecast by numerical weather prediction models still in need of optimization
New research identifies key cellular mechanism driving Alzheimer’s disease
Trends in buprenorphine dispensing among adolescents and young adults in the US
Emergency department physicians vary widely in their likelihood of hospitalizing a patient, even within the same facility
Firearm and motor vehicle pediatric deaths— intersections of age, sex, race, and ethnicity
Association of state cannabis legalization with cannabis use disorder and cannabis poisoning
Gestational hypertension, preeclampsia, and eclampsia and future neurological disorders
Adoption of “hospital-at-home” programs remains concentrated among larger, urban, not-for-profit and academic hospitals
Unlocking the mysteries of the human gut
High-quality nanodiamonds for bioimaging and quantum sensing applications
New clinical practice guideline on the process for diagnosing Alzheimer’s disease or a related form of cognitive impairment or dementia
Evolution of fast-growing fish-eating herring in the Baltic Sea
Cryptographic protocol enables secure data sharing in the floating wind energy sector
Can drinking coffee or tea help prevent head and neck cancer?
Development of a global innovative drug in eye drop form for treating dry age-related macular degeneration
Scientists unlock secrets behind flowering of the king of fruits
Texas A&M researchers illuminate the mysteries of icy ocean worlds
Prosthetic material could help reduce infections from intravenous catheters
Can the heart heal itself? New study says it can
Microscopic discovery in cancer cells could have a big impact
Rice researchers take ‘significant leap forward’ with quantum simulation of molecular electron transfer
Breakthrough new material brings affordable, sustainable future within grasp
How everyday activities inside your home can generate energy
Inequality weakens local governance and public satisfaction, study finds
Uncovering key molecular factors behind malaria’s deadliest strain
UC Davis researchers help decode the cause of aggressive breast cancer in women of color
Researchers discovered replication hubs for human norovirus
SNU researchers develop the world’s most sensitive flexible strain sensor
[Press-News.org] World's tiniest drug cabinets could be attached to cancerous cells for long term treatmentNovel method for slow release drugs