PRESS-NEWS.org - Press Release Distribution
PRESS RELEASES DISTRIBUTION

Preventing cell death from infection: Scientists demonstrate method to find new therapies

2014-01-16
(Press-News.org) Contact information: Mika Ono
mikaono@scripps.edu
858-784-2052
Scripps Research Institute
Preventing cell death from infection: Scientists demonstrate method to find new therapies

LA JOLLA, CA—January 16, 2014—Scientists at The Scripps Research Institute (TSRI) have demonstrated the power of a new drug discovery technique, which allows them to find—relatively quickly and cheaply—antibodies that have a desired effect on cells. The TSRI scientists used the technique to discover two antibodies that protect human cells from a cold virus.

The finding includes the useful insight that the cold virus can be stopped by targeting a key viral enzyme in just the right way. More importantly, the study highlights the broad potential of this discovery method to find new ways to fight infections, cancers and other diseases, and perhaps even aging.

"This method allows you to find antibodies that prevent cell death—in this case virus-induced cell death, but potentially any kind of cell death," said Richard A. Lerner, Institute Professor at TSRI. Lerner was the senior author of the study, which is reported online ahead of print on January 16, 2014 by the Cell Press journal Chemistry & Biology.

Bigger Pond, Better Fish

For the past two decades, Lerner and his TSRI laboratory have helped pioneer techniques for discovering antibodies that can be used as therapies or scientific tools. Humira®, now among the world's top-selling pharmaceuticals, is one of many products that have been discovered using such techniques.

Recently, the Lerner laboratory developed an advanced technique in which hundreds of millions of distinct antibodies are produced artificially within very large cultures of mammalian cells. Scientists can use such a system to swiftly find any antibodies that cause a desired outcome ("phenotype") in the cells where they reside.

Scientists for decades have applied similar "phenotypic selection" methods to libraries of standard small-molecule compounds. But the antibody libraries that can be used with the new method are orders of magnitude larger, making them much more likely to contain members that can achieve a desired result in cells.

"Small-molecule libraries generally contain only tens to hundreds of thousands of compounds, whereas with this method we can use libraries with more than a billion distinct antibodies," said Jia Xie, a staff scientist in the Lerner laboratory who was first author of the new study.

The new method gives scientists more power not only to find new antibody-based therapies, but also to discover the biological pathways through which they work—pathways that may turn out to be more easily and cheaply targeted by small-molecule drugs.

Earlier this year, Lerner, Xie and their colleagues reported using the new method to find an antibody that can perform the remarkable trick of turning bone marrow cells into young brain cells, via a previously unknown signaling mechanism.

For the new study, the team set out to do a proof-of-principle selection of antibodies that can bring about a different effect: protecting cells against an otherwise certain death. In this case, the agent of death was a rhinovirus, a respiratory virus that is the most common cause of ordinary colds. This rhinovirus reliably kills HeLa cells, a line of human-derived cells that have long been used in studies of viral infection.

Evolving a Discovery, Round by Round

To begin, the team used harmless lentiviruses to distribute the genes for about 100 million distinct antibodies among a similar number of HeLa cells, and later exposed the cells to the rhinovirus. So lethal was this virus to the HeLa cells that nearly every cell soon died, overwhelmed by the infection despite any protective effect from antibodies they harbored.

To detect a protective effect, Xie and his colleagues knew that he would have to make the selection process less drastic. Thus, for the next test, instead of selecting cells that survived—for none would have survived—they selected cells that showed delayed signs of impending death. The researchers then harvested the antibody genes these cells contained, and distributed them among a fresh set of cells. In this way, they reasoned, the genes for the antibodies that had exerted a protective effect would become more abundant within the cells.

Xie and his colleagues took the cells through three of these selection rounds—each requiring about ten days of working and waiting—but saw dismayingly few signs of progress. "The cells that had been infected with our antibody library still showed marginal to undetectable differences from the control cells," he said.

Then in the fourth round, the protective antibodies became abundant enough to bring about a dramatic change: almost all the antibody-containing cells survived, whereas all the control cells died.

The protection turned out to come from just two antibodies out of the original pool of roughly 100 million. The team determined that both these antibodies protected the cells by attaching to the 3C protease, a rhinovirus enzyme, in ways that hindered its infection-enabling activity.

In principle, if further tests bear out the protective effects of the two antibodies, then optimized versions of them, or small-molecule drugs that hit the same target, could be developed as treatments for rhinovirus infections.

But Xie noted that the study was mainly about demonstrating the usefulness of this broad new method.

"It's a fast, economical, multi-round selection scheme that enables scientists to identify functional antibodies from an unusually big library," he said. "As long as we have a way to detect and select a desired phenotype in the test cells, this method lets us fish out the antibodies that can make the phenotype happen."

The study also shows the power of the new method to illuminate biological pathways that mediate disease—in this case the activity of the rhinovirus 3C protease. Moreover, it offers unprecedented insight into the selection process itself.

"We were able to see at each round what antibodies were being selected and how abundant they were in cells," Lerner said. "It was like following evolution in a test tube."

Lerner emphasized that this was the first demonstration of screening for the prevention-of-cell-death phenotype using very large antibody libraries—but it won't be the last. "People now can use this technique to find antibodies that prevent cell death in a wide variety of situations," he said.

INFORMATION:

Other co-authors of the study, "Prevention of Cell Death by Antibodies Selected from Intracellular Combinatorial Libraries," were Kyungmoo Yea of the Shanghai Institute for Advanced Immunochemical Studies and Hongkai Zhang, Brian Moldt, Linling He and Jiang Zhu of TSRI.

The study was supported by Zebra Biologics, Inc.



ELSE PRESS RELEASES FROM THIS DATE:

5,900 natural gas leaks discovered under Washington, D.C.

2014-01-16
5,900 natural gas leaks discovered under Washington, D.C. A dozen locations had concentrations high enough to trigger explosion DURHAM, NC – More than 5,893 leaks from aging natural gas pipelines have been found under the streets of Washington, D.C. by a research team from Duke ...

Scientists discover 2 proteins that control chandelier cell architecture

2014-01-16
Scientists discover 2 proteins that control chandelier cell architecture Chandelier cells, a group of powerful inhibitory neurons, are important in epilepsy and schizophrenia Cold Spring Harbor, NY – Chandelier cells are neurons that use their unique shape to ...

Research sheds new light on heritability of disease

2014-01-16
Research sheds new light on heritability of disease Study explores the role DNA plays to predispose individuals to diseases BOSTON - A group of international researchers, led by a research fellow in the Harvard Medical School-affiliated ...

Immune cells may heal an injured heart

2014-01-16
Immune cells may heal an injured heart The immune system plays an important role in the heart's response to injury. But until recently, confusing data made it difficult to distinguish the immune factors that encourage the heart to heal following ...

Space station MAXI-mizing our understanding of the universe

2014-01-16
Space station MAXI-mizing our understanding of the universe Look up at the night sky ... do you see it? The stars of the cosmos bursting in magnificent explosions of death and rebirth! No? Well, then maybe you are not looking through the "eyes" of the Monitor ...

Unsafe at any level

2014-01-16
Unsafe at any level Very low blood alcohol content associated with causing car crashes Even "minimally buzzed" drivers are more often to blame for fatal car crashes than the sober drivers they collide with, reports a University of California, San Diego ...

Meltwater from Tibetan glaciers floods pastures

2014-01-16
Meltwater from Tibetan glaciers floods pastures Glaciers are important indicators of climate change. Global warming causes mountain glaciers to melt, which, apart from the shrinking of the Greenlandic and Antarctic ice sheets, is regarded as one of the main ...

Typhoid fever -- A race against time

2014-01-16
Typhoid fever -- A race against time The life-threatening disease typhoid fever results from the ongoing battle between the bacterial pathogen Salmonella and the immune cells of the body. Prof. Dirk Bumann's research group at the Biozentrum of the University of Basel has ...

Stem cells overcome damage in other cells by exporting mitochondria

2014-01-16
Stem cells overcome damage in other cells by exporting mitochondria

EU could cut emissions by 40 percent at moderate cost

2014-01-16
EU could cut emissions by 40 percent at moderate cost This is a key finding from an international multi-model analysis by the Stanford Energy Modeling Forum (EMF28) and comes at a crucial time, as the European Commission is set ...

LAST 30 PRESS RELEASES:

How rice plants tell head from toe during early growth

Scientists design solar-responsive biochar that accelerates environmental cleanup

Construction of a localized immune niche via supramolecular hydrogel vaccine to elicit durable and enhanced immunity against infectious diseases

Deep learning-based discovery of tetrahydrocarbazoles as broad-spectrum antitumor agents and click-activated strategy for targeted cancer therapy

DHL-11, a novel prieurianin-type limonoid isolated from Munronia henryi, targeting IMPDH2 to inhibit triple-negative breast cancer

Discovery of SARS-CoV-2 PLpro inhibitors and RIPK1 inhibitors with synergistic antiviral efficacy in a mouse COVID-19 model

Neg-entropy is the true drug target for chronic diseases

Oxygen-boosted dual-section microneedle patch for enhanced drug penetration and improved photodynamic and anti-inflammatory therapy in psoriasis

Early TB treatment reduced deaths from sepsis among people with HIV

Palmitoylation of Tfr1 enhances platelet ferroptosis and liver injury in heat stroke

Structure-guided design of picomolar-level macrocyclic TRPC5 channel inhibitors with antidepressant activity

Therapeutic drug monitoring of biologics in inflammatory bowel disease: An evidence-based multidisciplinary guidelines

New global review reveals integrating finance, technology, and governance is key to equitable climate action

New study reveals cyanobacteria may help spread antibiotic resistance in estuarine ecosystems

Around the world, children’s cooperative behaviors and norms converge toward community-specific norms in middle childhood, Boston College researchers report

How cultural norms shape childhood development

University of Phoenix research finds AI-integrated coursework strengthens student learning and career skills

Next generation genetics technology developed to counter the rise of antibiotic resistance

Ochsner Health hospitals named Best-in-State 2026

A new window into hemodialysis: How optical sensors could make treatment safer

High-dose therapy had lasting benefits for infants with stroke before or soon after birth

‘Energy efficiency’ key to mountain birds adapting to changing environmental conditions

Scientists now know why ovarian cancer spreads so rapidly in the abdomen

USF Health launches nation’s first fully integrated institute for voice, hearing and swallowing care and research

Why rethinking wellness could help students and teachers thrive

Seabirds ingest large quantities of pollutants, some of which have been banned for decades

When Earth’s magnetic field took its time flipping

Americans prefer to screen for cervical cancer in-clinic vs. at home

Rice lab to help develop bioprinted kidneys as part of ARPA-H PRINT program award

Researchers discover ABCA1 protein’s role in releasing molecular brakes on solid tumor immunotherapy

[Press-News.org] Preventing cell death from infection: Scientists demonstrate method to find new therapies