(Press-News.org) Contact information: Tomas Roslin
tomas.roslin@helsinki.fi
358-408-683-611
University of Helsinki
DNA barcodes change our view on how nature is structured
How you seek is what you find
To understand how feeding interactions are structured, researchers from Finland and Canada chose to focus on one of the simplest food webs on Earth: the moths and butterflies of Northeast Greenland, as attacked by their specialist enemies, parasitic wasps and flies developing on their prey (called host), killing it in the process.
"What we found in this system was mind-boggling", explains Helena Wirta, the lead author of the study. "When we supplemented the traditional technique of rearing host larvae until the emergence of either the adult or its enemy with modern molecular techniques, every measure of food web structure changed. All of a sudden, we found three times as many interactions between species as before. On average, most types of predator proved less specialized than assumed, and most types of prey were attacked by many more predators than we had thought. Thus, the full web was simply more tightly knit than we initially believed."
"To understand just how much the method affected our perception of our single target web, we may compare variation among different techniques to variation among food webs previously described for different parts of the world", explains Tomas Roslin, who initiated the work. "Web structure simply varied manifold more among our different techniques than among localities from the UK to Japan. Thus, whatever we think that we know about food web structure across the globe may be dictated as much by how we have searched as by how species really interact."
The revealing inner of a bug
What allowed the researchers to dissect the food web with a new precision was the use of DNA barcodes.
"The basis of this approach is to identify species based on variation in a given gene", says Sean Prosser, who spent months in the lab fine-tuning the approach. "By targeting gene regions which differ between the predator and the prey, we were able to selectively detect both immature predators from within their prey, and the remains of the larval meal (prey) from the stomachs of adult predators. By then comparing the sequences obtained to a reference library of DNA sequences of all species in the region, we were able to determine exactly who had attacked whom."
"One of the great beauties of this approach is that it allows us to retrace the life history of some really obscure players in the game", explains Gergely Várkonyi, an international expert of parasitic wasps involved in the project. "In almost any system, some of the predators will be really hard to investigate. As larvae, some of our target predators attack their prey when they are hidden in the ground or vegetation, where we humans will never discover them. By instead looking for prey remains in the guts of the more easily-detectable adult predators, we were able to establish the importance of these otherwise hidden links for the overall structure of the food web."
A five-year project
The current work is the culmination of a five-year exploration of insect food webs of Zackenberg by Tomas Roslin and Gergely Várkonyi.
"Why we wanted to work in the High Arctic was to keep things simple" says Tomas. "If you want to keep track of who interacts with whom, you should realize that things very quickly get out of hands with increasing diversity. With only a handful of species to keep track of, you can finally be confident that you really detect what goes on and what does not."
"And to be honest, we should not forget the beauty of the landscape and the excitement of working in one of the largest uninhabited regions on Earth", adds Gergely. "We have had polar bears tackling our traps and musk oxen chasing us. Such encounters tend to keep you alert."
The start of something new
"Most exciting of all are the vistas opened by our findings", says Helena. "What we have done so far is to apply these techniques to one of the simplest food webs on the globe – and yet they completely revamped our view on how this very web was structured. Now you can just imagine what will happen when we employ this approach in other settings. We still have no clue of what prior patterns may hold when we revisit them with this more sensitive looking glass."
Her coauthor Paul Hebert, who proposed the DNA barcoding concept a decade ago and now sees it applied to resolving more and more questions in nature, is prepared to take the vision one step further. "I believe that the techniques advanced here are game-changing when it comes to understanding how nature works", says he "In only a few years, the augmentation of this approach may allow us to pick up any bug, and recover DNA sequences from most other organisms which it has ever touched. Now inferring the whole interaction history of an organism, that will allow us to establish the structure of ecological interactions with a precision previously unconceived!"
INFORMATION:
DNA barcodes change our view on how nature is structured
2014-01-21
ELSE PRESS RELEASES FROM THIS DATE:
Quality control of mitochondria as a defense against disease
2014-01-21
Quality control of mitochondria as a defense against disease
HEIDELBERG, 20 January 2014 – Scientists from the Montreal Neurological Institute and Hospital in Canada have discovered that two genes linked to hereditary Parkinson's disease are ...
Ultra-thin tool heating for injection molding
2014-01-21
Ultra-thin tool heating for injection molding
If you have ever tried to make waffles then you are bound to be familiar with the following problem: You only get good waffles if the iron is heated to the correct temperature. The same principle ...
Hydrocephalus: Sensors monitor cerebral pressure
2014-01-21
Hydrocephalus: Sensors monitor cerebral pressure
Urinary incontinence, a shuffling gait, and deteriorating reasoning skills are all indicators pointing to a Parkinsonian or Alzheimer type disease. An equally plausible explanation is hydrocephalus, ...
Micropredators dictate occurrence of deadly amphibian disease
2014-01-21
Micropredators dictate occurrence of deadly amphibian disease
A new study raises hope to successfully fight the chytrid amphibian pathogen
This news release is available in German.
Leipzig: An international team of researchers has made ...
Bio-inspired robotic device could aid ankle-foot rehabilitation, CMU researcher says
2014-01-21
Bio-inspired robotic device could aid ankle-foot rehabilitation, CMU researcher says
Unlike rigid exoskeletons, soft wearable robot enables natural motions
PITTSBURGH—A soft, wearable device that mimics the muscles, tendons and ligaments of the lower leg could ...
Training your brain using neurofeedback
2014-01-21
Training your brain using neurofeedback
A new brain-imaging technique for a true brain workout
A new brain-imaging technique enables people to 'watch' their own brain activity in real time and to control or adjust function in pre-determined brain regions. The study from ...
New study finds mistimed sleep disrupts rhythms of genes in humans
2014-01-21
New study finds mistimed sleep disrupts rhythms of genes in humans
A new study from the University of Surrey, published today in the journal PNAS (Proceedings of the National Academy of Sciences), found that the daily rhythms of our genes are disrupted when sleep times shift.
Researchers ...
Hospital water taps contaminated with bacteria
2014-01-21
Hospital water taps contaminated with bacteria
Additional research needed to uncover how water contamination threatens patient safety
New research finds significantly higher levels of infectious pathogens in water from faucet taps with aerators ...
Frog fathers don't mind dropping off their tadpoles in cannibal-infested pools
2014-01-21
Frog fathers don't mind dropping off their tadpoles in cannibal-infested pools
Male dyeing poison frogs make seemingly strange parental decisions in depositing tadpoles in not-so-safe havens
Given a choice, male dyeing poison frogs snub empty pools in favor of ones ...
Novel nanotherapy breakthrough may help reduce recurrent heart attacks and stroke
2014-01-21
Novel nanotherapy breakthrough may help reduce recurrent heart attacks and stroke
Icahn School of Medicine at Mount Sinai designs HDL nanoparticle to deliver statin medication inside inflamed blood vessels to prevent repeat ...