(Press-News.org) Contact information: Lynn Yarris
lcyarris@lbl.gov
510-486-5375
DOE/Lawrence Berkeley National Laboratory
Cooling microprocessors with carbon nanotubes
Technique from Berkeley Lab's Molecular Foundry could also work with graphene
"Cool it!" That's a prime directive for microprocessor chips and a promising new solution to meeting this imperative is in the offing. Researchers with the U.S. Department of Energy (DOE)'s Lawrence Berkeley National Laboratory (Berkeley Lab) have developed a "process friendly" technique that would enable the cooling of microprocessor chips through carbon nanotubes.
Frank Ogletree, a physicist with Berkeley Lab's Materials Sciences Division, led a study in which organic molecules were used to form strong covalent bonds between carbon nanotubes and metal surfaces. This improved by six-fold the flow of heat from the metal to the carbon nanotubes, paving the way for faster, more efficient cooling of computer chips. The technique is done through gas vapor or liquid chemistry at low temperatures, making it suitable for the manufacturing of computer chips.
"We've developed covalent bond pathways that work for oxide-forming metals, such as aluminum and silicon, and for more noble metals, such as gold and copper," says Ogletree, who serves as a staff engineer for the Imaging Facility at the Molecular Foundry, a DOE nanoscience center hosted by Berkeley Lab. "In both cases the mechanical adhesion improved so that surface bonds were strong enough to pull a carbon nanotube array off of its growth substrate and significantly improve the transport of heat across the interface."
Ogletree is the corresponding author of a paper describing this research in Nature Communications. The paper is titled "Enhanced Thermal Transport at Covalently Functionalized Carbon Nanotube Array Interfaces." Co-authors are Sumanjeet Kaur, Nachiket Raravikar, Brett Helms and Ravi Prasher.
Overheating is the bane of microprocessors. As transistors heat up, their performance can deteriorate to the point where they no longer function as transistors. With microprocessor chips becoming more densely packed and processing speeds continuing to increase, the overheating problem looms ever larger. The first challenge is to conduct heat out of the chip and onto the circuit board where fans and other techniques can be used for cooling. Carbon nanotubes have demonstrated exceptionally high thermal conductivity but their use for cooling microprocessor chips and other devices has been hampered by high thermal interface resistances in nanostructured systems.
"The thermal conductivity of carbon nanotubes exceeds that of diamond or any other natural material but because carbon nanotubes are so chemically stable, their chemical interactions with most other materials are relatively weak, which makes for high thermal interface resistance," Ogletree says. "Intel came to the Molecular Foundry wanting to improve the performance of carbon nanotubes in devices. Working with Nachiket Raravikar and Ravi Prasher, who were both Intel engineers when the project was initiated, we were able to increase and strengthen the contact between carbon nanotubes and the surfaces of other materials. This reduces thermal resistance and substantially improves heat transport efficiency."
Sumanjeet Kaur, lead author of the Nature Communications paper and an expert on carbon nanotubes, with assistance from co-author and Molecular Foundry chemist Brett Helms, used reactive molecules to bridge the carbon nanotube/metal interface - aminopropyl-trialkoxy-silane (APS) for oxide-forming metals, and cysteamine for noble metals. First vertically aligned carbon nanotube arrays were grown on silicon wafers, and thin films of aluminum or gold were evaporated on glass microscope cover slips. The metal films were then "functionalized" and allowed to bond with the carbon nanotube arrays. Enhanced heat flow was confirmed using a characterization technique developed by Ogletree that allows for interface-specific measurements of heat transport.
"You can think of interface resistance in steady-state heat flow as being an extra amount of distance the heat has to flow through the material," Kaur says. "With carbon nanotubes, thermal interface resistance adds something like 40 microns of distance on each side of the actual carbon nanotube layer. With our technique, we're able to decrease the interface resistance so that the extra distance is around seven microns at each interface."
Although the approach used by Ogletree, Kaur and their colleagues substantially strengthened the contact between a metal and individual carbon nanotubes within an array, a majority of the nanotubes within the array may still fail to connect with the metal. The Berkeley team is now developing a way to improve the density of carbon nanotube/metal contacts. Their technique should also be applicable to single and multi-layer graphene devices, which face the same cooling issues.
"Part of our mission at the Molecular Foundry is to help develop solutions for technology problems posed to us by industrial users that also raise fundamental science questions," Ogletree says. "In developing this technique to address a real-world technology problem, we also created tools that yield new information on fundamental chemistry."
INFORMATION:
This work was supported by the DOE Office of Science and by the Intel Corporation.
The Molecular Foundry is one of five DOE Nanoscale Science Research Centers (NSRCs), national user facilities for interdisciplinary research at the nanoscale, supported by the DOE Office of Science. Together the NSRCs comprise a suite of complementary facilities that provide researchers with state-of-the-art capabilities to fabricate, process, characterize, and model nanoscale materials, and constitute the largest infrastructure investment of the National Nanotechnology Initiative. The NSRCs are located at DOE's Argonne, Brookhaven, Lawrence Berkeley, Oak Ridge and Sandia and Los Alamos national laboratories. For more information about the DOE NSRCs, please visit science.energy.gov/bes/suf/user-facilities/nanoscale-science-research-centers/.
Lawrence Berkeley National Laboratory addresses the world's most urgent scientific challenges by advancing sustainable energy, protecting human health, creating new materials, and revealing the origin and fate of the universe. Founded in 1931, Berkeley Lab's scientific expertise has been recognized with 13 Nobel prizes. The University of California manages Berkeley Lab for the U.S. Department of Energy's Office of Science. For more, visit http://www.lbl.gov.
The DOE Office of Science is the single largest supporter of basic research in the physical sciences in the United States and is working to address some of the most pressing challenges of our time. For more information, please visit science.energy.gov.
Cooling microprocessors with carbon nanotubes
Technique from Berkeley Lab's Molecular Foundry could also work with graphene
2014-01-23
ELSE PRESS RELEASES FROM THIS DATE:
UofL epidemiologist uncovers new genes linked to abdominal fat
2014-01-23
LOUISVILLE, Ky. – Excess abdominal fat can be a precursor to diseases such as cardiovascular disease, type 2 diabetes and cancer. A person's measure of belly fat is reflected in the ratio ...
Humans can use smell to detect levels of dietary fat
2014-01-23
PHILADELPHIA (January 22, 2014) – New research from the Monell Center reveals humans can use the sense of smell to detect dietary fat in food. As food smell almost always is detected before taste, the findings ...
'Watch' cites concern about femoral neck fractures in long-necked modular implants
2014-01-23
Needham, MA.–JBJS Case Connector, an online case report journal published by The Journal of Bone and Joint Surgery, has issued ...
Vulvar condition causing painful sex strikes twice as many Hispanic women
2014-01-23
ANN ARBOR, Mich. — ...
Drug discovery potential of natural microbial genomes
2014-01-23
Scientists at the University of California, San Diego have developed a new genetic platform that allows efficient production of naturally ...
Malaria drug combo could help prevent pregnancy complications in lupus patients
2014-01-23
An anti-malaria drug combination might be useful in helping to prevent pregnancy complications in women with lupus and the related disorder antiphospholipid syndrome, Yale School of Medicine ...
Scripps Florida scientists offer new insight into neuron changes brought about by aging
2014-01-23
JUPITER, FL, January 22, 2013 – How aging affects communication between neurons is not well understood, a gap that makes it more difficult to treat a range of disorders, ...
Image or reality? Leaf research needs photos and lab analysis
2014-01-23
PROVIDENCE, R.I. [Brown University] — Every picture tells a story, but the story digital photos tell about how forests respond to climate change could be incomplete, according to new research.
Scientists ...
Study finds paid search ads don't always pay off
2014-01-23
Watch Prof. Tadelis talk about his research: https://www.youtube.com/watch?v=rneZwbvvmcg&feature=youtu.be
UNIVERSITY OF CALIFORNIA, BERKELEY'S HAAS SCHOOL OF BUSINESS - Businesses ...
World's dangerous neighborhoods produce aggressive children
2014-01-23
World's dangerous neighborhoods produce aggressive children
DURHAM, N.C. -- Children around the world who grow up in dangerous neighborhoods exhibit more aggressive behavior, says a new Duke University-led study that is the first to examine the topic across a wide range ...
LAST 30 PRESS RELEASES:
New drug-eluting balloon may be as safe and effective as conventional metal stents for repeat percutaneous coronary interventions
Effectiveness and cost-effectiveness of automated external defibrillators in private homes
University of Phoenix College of Social and Behavioral Sciences leadership publishes white paper on trauma-informed education
Microbial iron mining: turning polluted soils into self-cleaning reactors
Molecular snapshots reveal how the body knows it’s too hot
Analysis finds alarming rise in severe diverticulitis among younger Americans
Mitochondria and lysosomes reprogram immune cells that dampen inflammation
Cockroach infestation linked to home allergen, endotoxin levels
New biochar-powered microbial systems offer sustainable solution for toxic pollutants
Identifying the best high-biomass sorghum hybrids based on biomass yield potential and feedstock quality affected by nitrogen fertility management under various environments
How HIV’s shape-shifting protein reveals clues for smarter drug design
Study identifies viral combinations that heighten risk of severe respiratory illnesses in infants
Aboveground rather than belowground productivity drives variability in miscanthus × giganteus net primary productivity
Making yeast more efficient 'cell factories' for producing valuable plant compounds
Aging in plain sight: What new research says the eyes reveal about aging and cardiovascular risk
Child welfare system involvement may improve diagnosis of developmental delays
Heavier electric trucks could strain New York City’s roads and bridges, study warns
From womb to world: scientists reveal how maternal stress programs infant development
Bezos Earth Fund grants $2M to UC Davis and American Heart Association to advance AI-designed foods
Data Protection is transforming humanitarian action in the digital age, new book shows
AI unlocks the microscopic world to transform future manufacturing
Virtual reality helps people understand and care about distant communities
Optica Publishing Group announces subscribe to open pilot for the Journal of the Optical Society of America B (JOSA B)
UNF partners with Korey Stringer Institute and Perry Weather to open heat exercise laboratory on campus
DNA from Napoleon’s 1812 army identifies the pathogens likely responsible for the army’s demise during their retreat from Russia
Study suggests two unsuspected pathogens struck Napoleon's army during the retreat from Russia in 1812
The 25-year incidence and progression of hearing loss in the Framingham offspring study
AI-driven nanomedicine breakthrough paves way for personalized breast cancer therapy
Fight or flight—and grow a new limb
Augmenting electroencephalogram transformer for steady-state visually evoked potential-based brain–computer interfaces
[Press-News.org] Cooling microprocessors with carbon nanotubesTechnique from Berkeley Lab's Molecular Foundry could also work with graphene