PRESS-NEWS.org - Press Release Distribution
PRESS RELEASES DISTRIBUTION

When nanotechnology meets quantum physics in 1 dimension

New experiment supports long-predicted 'Luttinger liquid' model

2014-01-24
(Press-News.org) Contact information: Chris Chipello
christopher.chipello@mcgill.ca
514-398-4201
McGill University
When nanotechnology meets quantum physics in 1 dimension New experiment supports long-predicted 'Luttinger liquid' model How would electrons behave if confined to a wire so slender they could pass through it only in single-file?

The question has intrigued scientists for more than half a century. In 1950, Japanese Nobel Prize winner Sin-Itiro Tomonaga, followed by American physicist Joaquin Mazdak Luttinger in 1963, came up with a mathematical model showing that the effects of one particle on all others in a one-dimensional line would be much greater than in two- or three-dimensional spaces. Among quantum physicists, this model came to be known as the "Luttinger liquid" state.

Until very recently, however, there had been only a few successful attempts to test the model in devices similar to those in computers, because of the engineering complexity involved. Now, scientists from McGill University and Sandia National Laboratories have succeeded in conducting a new experiment that supports the existence of the long-sought-after Luttinger liquid state. Their findings, published in the Jan. 23 issue of Science Express, validate important predictions of the Luttinger liquid model.

The experiment was led by McGill PhD student Dominique Laroche under the supervision of Professor Guillaume Gervais of McGill's Department of Physics and Dr. Michael Lilly of Sandia National Laboratories in Albuquerque, N.M. The new study follows on the team's discovery in 2011 of a way to engineer one of the world's smallest electronic circuits, formed by two wires separated by only about 15 nanometers, or roughly 150 atoms.

What does one-dimensional quantum physics involve? Gervais explains it this way: "Imagine that you are driving on a highway and the traffic is not too dense. If a car stops in front of you, you can get around it by passing to the left or right. That's two-dimensional physics. But if you enter a tunnel with a single lane and a car stops, all the other cars behind it must slam on the brakes. That's the essence of the Luttinger liquid effect. The way electrons behave in the Luttinger state is entirely different because they all become coupled to one another."

To scientists, "what is so fascinating and elegant about quantum physics in one dimension is that the solutions are mathematically exact," Gervais adds. "In most other cases, the solutions are only approximate."

Making a device with the correct parameters to conduct the experiment was no simple task, however, despite the team's 2011 discovery of a way to do so. It took years of trial, and more than 250 faulty devices – each of which required 29 processing steps – before Laroche's painstaking efforts succeeded in producing functional devices yielding reliable data. "So many things could go wrong during the fabrication process that troubleshooting the failed devices felt like educated guesswork at times," explains Laroche. "Adding in the inherent failure rate compounded at each processing step made the fabrication of these devices extremely challenging."

In particular, the experiment measures the effect that a very small electrical current in one of the wires has on a nearby wire. This can be viewed as the "friction" between the two circuits, and the experiment shows that this friction increases as the circuits are cooled to extremely low temperatures. This effect is a strong prediction of Luttinger liquid theory.

The experiments were conducted both at McGill University and at the Center for Integrated Nanotechnologies, a U.S. Department of Energy, Office of Basic Energy Sciences user facility operated by Sandia National Laboratories.

"It took a very long time to make these devices," said Lilly. "It's not impossible to do in other labs, but Sandia has crystal-growing capabilities, a microfabrication facility, and support for fundamental research from DOE's office of Basic Energy Sciences (BES), and we're very interested in understanding the fundamental ideas that drive the behavior of very small systems." The findings could lead to practical applications in electronics and other fields. While it's difficult at this stage to predict what those might be, "the same was true in the case of the laser when it was invented," Gervais notes. "Nanotechnologies are already helping us in medicine, electronics and engineering – and this work shows that they can help us get to the bottom of a long-standing question in quantum physics."

###

The research was supported by the Division of Materials Sciences and Engineering, Office of Basic Energy Sciences, U.S. Department of Energy; the Natural Sciences and Engineering Research Council of Canada (NSERC); the Canadian Institute for Advanced Research (CIFAR), and the Fonds québécois de la recherche sur la nature et les technologies (FQRNT).

END



ELSE PRESS RELEASES FROM THIS DATE:

Almost 200 years later, are we living in the final days of the stethoscope?

2014-01-24
An editorial in this month's edition of Global Heart (the journal of the World Heart Federation) suggests the world of medicine could be experiencing its final days of the stethoscope, ...

Evidence rapidly building on utility of ultrasound in areas other than cardiology

2014-01-24
A paper in this month's edition of Global Heart (the journal of the World Heart Federation) says there is mounting evidence regarding the utility of ultrasound in areas outside its ...

New genes spring and spread from non-coding DNA

2014-01-24
"Where do new genes come from?" is a long-standing question in genetics and evolutionary biology. A new study from researchers at the University of California, Davis, published Jan. 23 in Science Express, shows ...

Probing hydrogen catalyst assembly

2014-01-24
PUBLIC RELEASE DATE: 23-Jan-2014 [ | E-mail ] var addthis_pub="eurekalert"; var addthis_options = "favorites, delicious, digg, facebook, twitter, google, newsvine, reddit, slashdot, stumbleupon, buzz, more" Share Contact: Andy Fell ahfell@ucdavis.edu 530-752-4533 University of California - Davis Probing hydrogen catalyst assembly VIDEO: Inexpensive catalysts for forming hydrogen would boost alternative fuels. UC Davis chemist Dave Britt talks about work ...

Donors should have access to their own raw data provided to biobanks

2014-01-24
Scientists have called for data held in biobanks to be made accessible to the people donating material and data to them. In a paper published today in Science, Jeantine Lunshof and George ...

Researchers discover simple amoeba holds the key to better treatment for Alzheimer's

2014-01-24
Scientists have discovered the use of a simple single-celled amoeba to understand the function of human proteins in causing Alzheimer's disease. The new ...

Central Europeans already digested milk as well as us 1,000 years ago

2014-01-24
Back in the Middle Ages, Central Europeans were already capable of digesting milk, yoghurt and cheese just as well as us today. Researchers at the University of Zurich's Centre for ...

Generation blame: How age affects our views of anti-social behavior

2014-01-24
A study of interpretations of anti-social behaviour (ASB) found a significant gap between the views of different age groups - with older people more likely than younger people to interpret ...

Changing climate: How dust changed the face of the earth

2014-01-24
Bremerhaven/Germany, 24 January 2014. In spring 2010, ...

World's first magma-enhanced geothermal system created in Iceland

2014-01-24
RIVERSIDE, Calif. — In 2009, a borehole drilled at Krafla, ...

LAST 30 PRESS RELEASES:

Public confidence in U.S. health agencies slides, fueled by declines among Democrats

“Quantum squeezing” a nanoscale particle for the first time

El Niño spurs extreme daily rain events despite drier monsoons in India

Two studies explore the genomic diversity of deadly mosquito vectors

Zebra finches categorize their vocal calls by meaning

Analysis challenges conventional wisdom about partisan support for US science funding

New model can accurately predict a forest’s future

‘Like talking on the telephone’: Quantum computing engineers get atoms chatting long distance

Genomic evolution of major malaria-transmitting mosquito species uncovered

Overcoming the barriers of hydrogen storage with a low-temperature hydrogen battery

Tuberculosis vulnerability of people with HIV: a viral protein implicated

Partnership with Kenya's Turkana community helps scientists discover genes involved in adaptation to desert living

Decoding the selfish gene, from evolutionary cheaters to disease control

Major review highlights latest evidence on real-time test for blood – clotting in childbirth emergencies

Inspired by bacteria’s defense strategies

Research spotlight: Combination therapy shows promise for overcoming treatment resistance in glioblastoma

University of Houston co-leads $25 million NIH-funded grant to study the delay of nearsightedness in children

NRG Oncology PREDICT-RT study completes patient accrual, tests individualized concurrent therapy and radiation for high-risk prostate cancer

Taking aim at nearsightedness in kids before it’s diagnosed

With no prior training, dogs can infer how similar types of toys work, even when they don’t look alike

Three deadliest risk factors of a common liver disease identified in new study

Dogs can extend word meanings to new objects based on function, not appearance

Palaeontology: South American amber deposit ‘abuzz’ with ancient insects

Oral microbes linked to increased risk of pancreatic cancer

Soccer heading does most damage to brain area critical for cognition

US faces rising death toll from wildfire smoke, study finds

Scenario projections of COVID-19 burden in the US, 2024-2025

Disparities by race and ethnicity in percutaneous coronary intervention

Glioblastoma cells “unstick” from their neighbors to become more deadly

Oral bacterial and fungal microbiome and subsequent risk for pancreatic cancer

[Press-News.org] When nanotechnology meets quantum physics in 1 dimension
New experiment supports long-predicted 'Luttinger liquid' model