PRESS-NEWS.org - Press Release Distribution
PRESS RELEASES DISTRIBUTION

Stanford scientists use 'virtual earthquakes' to forecast Los Angeles quake risk

2014-01-24
(Press-News.org) Contact information: Ker Than
kerthan@stanford.edu
646-673-4558
Stanford University
Stanford scientists use 'virtual earthquakes' to forecast Los Angeles quake risk Stanford scientists are using weak vibrations generated by the Earth's oceans to produce "virtual earthquakes" that can be used to predict the ground movement and shaking hazard to buildings from real quakes.

[VIDEO AT: https://www.youtube.com/watch?v=WTg3GzGCRfA]

The new technique, detailed in the Jan. 24 issue of the journal Science, was used to confirm a prediction that Los Angeles will experience stronger-than-expected ground movement if a major quake occurs south of the city.

"We used our virtual earthquake approach to reconstruct large earthquakes on the southern San Andreas Fault and studied the responses of the urban environment of Los Angeles to such earthquakes," said lead author Marine Denolle, who recently received her PhD in geophysics from Stanford and is now at the Scripps Institution of Oceanography in San Diego.

The new technique capitalizes on the fact that earthquakes aren't the only sources of seismic waves. "If you put a seismometer in the ground and there's no earthquake, what do you record? It turns out that you record something," said study leader Greg Beroza, a geophysics professor at Stanford.

What the instruments will pick up is a weak, continuous signal known as the ambient seismic field. This omnipresent field is generated by ocean waves interacting with the solid Earth. When the waves collide with each other, they generate a pressure pulse that travels through the ocean to the sea floor and into the Earth's crust. "These waves are billions of times weaker than the seismic waves generated by earthquakes," Beroza said.

Scientists have known about the ambient seismic field for about 100 years, but it was largely considered a nuisance because it interferes with their ability to study earthquakes. The tenuous seismic waves that make up this field propagate every which way through the crust. But in the past decade, seismologists developed signal-processing techniques that allow them to isolate certain waves; in particular, those traveling through one seismometer and then another one downstream.

Denolle built upon these techniques and devised a way to make these ambient seismic waves function as proxies for seismic waves generated by real earthquakes. By studying how the ambient waves moved underground, the researchers were able to predict the actions of much stronger waves from powerful earthquakes.

She began by installing several seismometers along the San Andreas Fault to specifically measure ambient seismic waves.

Employing data from the seismometers, the group then used mathematical techniques they developed to make the waves appear as if they originated deep within the Earth. This was done to correct for the fact that the seismometers Denolle installed were located at the Earth's surface, whereas real earthquakes occur at depth.

In the study, the team used their virtual earthquake approach to confirm the accuracy of a prediction, made in 2006 by supercomputer simulations, that if the southern San Andreas Fault section of California were to rupture and spawn an earthquake, some of the seismic waves traveling northward would be funneled toward Los Angeles along a 60-mile-long (100-kilometer-long) natural conduit that connects the city with the San Bernardino Valley. This passageway is composed mostly of sediments, and acts to amplify and direct waves toward the Los Angeles region.

Until now, there was no way to test whether this funneling action, known as the waveguide-to-basin effect, actually takes place because a major quake has not occurred along that particular section of the San Andreas Fault in more than 150 years.

The virtual earthquake approach also predicts that seismic waves will become further amplified when they reach Los Angeles because the city sits atop a large sedimentary basin. To understand why this occurs, study coauthor Eric Dunham, an assistant professor of geophysics at Stanford, said to imagine taking a block of plastic foam, cutting out a bowl-shaped hole in the middle, and filling the cavity with gelatin. In this analogy, the plastic foam is a stand-in for rocks, while the gelatin is like sediments, or dirt. "The gelatin is floppier and a lot more compliant. If you shake the whole thing, you're going to get some motion in the Styrofoam, but most of what you're going to see is the basin oscillating," Dunham said.

As a result, the scientists say, Los Angeles could be at risk for stronger, and more variable, ground motion if a large earthquake – magnitude 7.0 or greater – were to occur along the southern San Andreas Fault, near the Salton Sea.

"The seismic waves are essentially guided into the sedimentary basin that underlies Los Angeles," Beroza said. "Once there, the waves reverberate and are amplified, causing stronger shaking than would otherwise occur."

Beroza's group is planning to test the virtual earthquake approach in other cities around the world that are built atop sedimentary basins, such as Tokyo, Mexico City, Seattle and parts of the San Francisco Bay area. "All of these cities are earthquake threatened, and all of them have an extra threat because of the basin amplification effect," Beroza said.

Because the technique is relatively inexpensive, it could also be useful for forecasting ground motion in developing countries. "You don't need large supercomputers to run the simulations," Denolle said.

In addition to studying earthquakes that have yet to occur, the technique could also be used as a kind of "seismological time machine" to recreate the seismic signatures of temblors that shook the Earth long ago, according to Beroza.

"For an earthquake that occurred 200 years ago, if you know where the fault was, you could deploy instruments, go through this procedure, and generate seismograms for earthquakes that occurred before seismographs were invented," he said.

### German Prieto, an assistant professor of geophysics at the Massachusetts Institute of Technology and a Stanford alumnus, also contributed to the research.

Ker Than is the associate director of communications for the School of Earth Sciences.

END



ELSE PRESS RELEASES FROM THIS DATE:

Can walkies tell who's the leader of the pack?

2014-01-24
PUBLIC RELEASE DATE: 23-Jan-2014 [ | E-mail ] var addthis_pub="eurekalert"; var addthis_options = "favorites, delicious, digg, facebook, twitter, google, newsvine, reddit, slashdot, stumbleupon, buzz, more" Share Contact: Oxford University News & Information Office press.office@admin.ox.ac.uk 01-865-280-532 University of Oxford Can walkies tell who's the leader of the pack? Dogs' paths during group walks could be used to determine leadership roles, social ranks and personality traits ...

Small size in early pregnancy linked to poor heart health later in life

2014-01-24
Poor growth in the first three months of pregnancy ...

Would criminalizing guilty healthcare professionals improve patient care?

2014-01-24
The UK government is considering whether to adopt a recommendation to introduce a ...

Watching molecules morph into memories

2014-01-24
PUBLIC RELEASE DATE: 23-Jan-2014 [ | E-mail ] var addthis_pub="eurekalert"; var addthis_options = "favorites, delicious, digg, facebook, twitter, google, newsvine, reddit, slashdot, stumbleupon, buzz, more" Share Contact: Kim Newman sciencenews@einstein.yu.edu 7-181-430-3101 Albert Einstein College of Medicine Watching molecules morph into memories Breakthrough allows Einstein scientists to probe how memories form in nerve cells VIDEO: In two papers in ...

Risky ripples: Frog's love song may summon kiss of death

2014-01-24
Male túngara frogs call from puddles to attract females. The production of the call incidentally creates ripples that spread across the water. Researchers at the Smithsonian Tropical Research ...

Wisconsin researchers identify key pathway for plant cell growth

2014-01-24
MADISON, Wis. — For plants, the only way to grow is for cells to expand. Unlike animals, cell division in plants happens only within a tiny region of the root and stem apex, making cell expansion ...

Islands in the brain: New circuit shapes memory formation

2014-01-24
Researchers at the RIKEN-MIT Center for Neural Circuit Genetics and MIT's Picower Institute for Learning and Memory have discovered a new brain circuit that shapes memory formation by endowing neurons with the ability to connect ...

Ultrasound training should be implemented early into medical education programs

2014-01-24
A paper in this month's edition of Global Heart (the journal of the World Heart Federation advocates including ultrasound in medical education programmes to realise the full benefits ...

Bats use water ripples to hunt frogs

2014-01-24
As the male túngara frog serenades female frogs from a pond, he creates watery ripples that make him easier to target by rivals and predators such as bats, according to researchers from The University of Texas ...

Study reveals how the brain links memories of sequential events

2014-01-24
CAMBRIDGE, Mass-- Suppose you heard the sound of skidding tires, followed by a car crash. The next time ...

LAST 30 PRESS RELEASES:

JMIR Aging launches new section focused on advance care planning for older adults

Astronomers discover a planet that’s rapidly disintegrating, producing a comet-like tail

Study reveals gaps in flu treatment for high-risk adults

Oil cleanup agents do not impede natural biodegradation

AI algorithm can help identify high-risk heart patients to quickly diagnose, expedite, and improve care

Telemedicine had an impact on carbon emissions equivalent to reducing up to 130,000 car trips each month in 2023

Journalist David Zweig analyzes American schools, the virus, and a story of bad decisions

Endocrine Society names Tena-Sempere as next Editor-in-Chief of Endocrinology

Three-dimensional gene hubs may promote brain cancer

Liquid biopsy: A breakthrough technology in early cancer screening

Soaring insurance costs top concern for Floridians, FAU survey finds

In US, saving money is top reason to embrace solar power

Antibiotic pollution in rivers

Join the nation of lifesavers at NFL draft in Green Bay

TTUHSC researchers seek novel therapies for chronic pain

Predicting long-term psychedelic side-effects

Carnegie Mellon researchers create transformable flat-to-shape objects using sewing technology

Preventing cellular senescence to prevent neuroinflammation

Tuning in to blood glucose for simpler early diabetes detection

NUS Medicine and HeyVenus study: Menopause is a critical workplace challenge for APAC business leaders

Insects are disappearing due to agriculture – and many other drivers, new research reveals

Blends of child and best friend, with power imbalance: How dogs fit into our social networks

Transgene-free genome editing in poplar trees: A step toward sustainable forestry

Single-dose psychedelic boosts brain flexibility for weeks, peer-reviewed study finds

Sex differences drive substance use patterns in panic disorder patients

Multi-omics meets immune profiling in the quest to decode disease risk

Medication-induced sterol disruption: A silent threat to brain development and public health

Shining a light on DNA: a rapid, ultra-sensitive, PCR-free detection method

European hares are thriving in the city: New monitoring methods reveal high densities in Danish urban areas

Study: middle-aged Americans are lonelier than adults in other countries, age groups

[Press-News.org] Stanford scientists use 'virtual earthquakes' to forecast Los Angeles quake risk