PRESS-NEWS.org - Press Release Distribution
PRESS RELEASES DISTRIBUTION

Stanford scientists use 'virtual earthquakes' to forecast Los Angeles quake risk

2014-01-24
(Press-News.org) Contact information: Ker Than
kerthan@stanford.edu
646-673-4558
Stanford University
Stanford scientists use 'virtual earthquakes' to forecast Los Angeles quake risk Stanford scientists are using weak vibrations generated by the Earth's oceans to produce "virtual earthquakes" that can be used to predict the ground movement and shaking hazard to buildings from real quakes.

[VIDEO AT: https://www.youtube.com/watch?v=WTg3GzGCRfA]

The new technique, detailed in the Jan. 24 issue of the journal Science, was used to confirm a prediction that Los Angeles will experience stronger-than-expected ground movement if a major quake occurs south of the city.

"We used our virtual earthquake approach to reconstruct large earthquakes on the southern San Andreas Fault and studied the responses of the urban environment of Los Angeles to such earthquakes," said lead author Marine Denolle, who recently received her PhD in geophysics from Stanford and is now at the Scripps Institution of Oceanography in San Diego.

The new technique capitalizes on the fact that earthquakes aren't the only sources of seismic waves. "If you put a seismometer in the ground and there's no earthquake, what do you record? It turns out that you record something," said study leader Greg Beroza, a geophysics professor at Stanford.

What the instruments will pick up is a weak, continuous signal known as the ambient seismic field. This omnipresent field is generated by ocean waves interacting with the solid Earth. When the waves collide with each other, they generate a pressure pulse that travels through the ocean to the sea floor and into the Earth's crust. "These waves are billions of times weaker than the seismic waves generated by earthquakes," Beroza said.

Scientists have known about the ambient seismic field for about 100 years, but it was largely considered a nuisance because it interferes with their ability to study earthquakes. The tenuous seismic waves that make up this field propagate every which way through the crust. But in the past decade, seismologists developed signal-processing techniques that allow them to isolate certain waves; in particular, those traveling through one seismometer and then another one downstream.

Denolle built upon these techniques and devised a way to make these ambient seismic waves function as proxies for seismic waves generated by real earthquakes. By studying how the ambient waves moved underground, the researchers were able to predict the actions of much stronger waves from powerful earthquakes.

She began by installing several seismometers along the San Andreas Fault to specifically measure ambient seismic waves.

Employing data from the seismometers, the group then used mathematical techniques they developed to make the waves appear as if they originated deep within the Earth. This was done to correct for the fact that the seismometers Denolle installed were located at the Earth's surface, whereas real earthquakes occur at depth.

In the study, the team used their virtual earthquake approach to confirm the accuracy of a prediction, made in 2006 by supercomputer simulations, that if the southern San Andreas Fault section of California were to rupture and spawn an earthquake, some of the seismic waves traveling northward would be funneled toward Los Angeles along a 60-mile-long (100-kilometer-long) natural conduit that connects the city with the San Bernardino Valley. This passageway is composed mostly of sediments, and acts to amplify and direct waves toward the Los Angeles region.

Until now, there was no way to test whether this funneling action, known as the waveguide-to-basin effect, actually takes place because a major quake has not occurred along that particular section of the San Andreas Fault in more than 150 years.

The virtual earthquake approach also predicts that seismic waves will become further amplified when they reach Los Angeles because the city sits atop a large sedimentary basin. To understand why this occurs, study coauthor Eric Dunham, an assistant professor of geophysics at Stanford, said to imagine taking a block of plastic foam, cutting out a bowl-shaped hole in the middle, and filling the cavity with gelatin. In this analogy, the plastic foam is a stand-in for rocks, while the gelatin is like sediments, or dirt. "The gelatin is floppier and a lot more compliant. If you shake the whole thing, you're going to get some motion in the Styrofoam, but most of what you're going to see is the basin oscillating," Dunham said.

As a result, the scientists say, Los Angeles could be at risk for stronger, and more variable, ground motion if a large earthquake – magnitude 7.0 or greater – were to occur along the southern San Andreas Fault, near the Salton Sea.

"The seismic waves are essentially guided into the sedimentary basin that underlies Los Angeles," Beroza said. "Once there, the waves reverberate and are amplified, causing stronger shaking than would otherwise occur."

Beroza's group is planning to test the virtual earthquake approach in other cities around the world that are built atop sedimentary basins, such as Tokyo, Mexico City, Seattle and parts of the San Francisco Bay area. "All of these cities are earthquake threatened, and all of them have an extra threat because of the basin amplification effect," Beroza said.

Because the technique is relatively inexpensive, it could also be useful for forecasting ground motion in developing countries. "You don't need large supercomputers to run the simulations," Denolle said.

In addition to studying earthquakes that have yet to occur, the technique could also be used as a kind of "seismological time machine" to recreate the seismic signatures of temblors that shook the Earth long ago, according to Beroza.

"For an earthquake that occurred 200 years ago, if you know where the fault was, you could deploy instruments, go through this procedure, and generate seismograms for earthquakes that occurred before seismographs were invented," he said.

### German Prieto, an assistant professor of geophysics at the Massachusetts Institute of Technology and a Stanford alumnus, also contributed to the research.

Ker Than is the associate director of communications for the School of Earth Sciences.

END



ELSE PRESS RELEASES FROM THIS DATE:

Can walkies tell who's the leader of the pack?

2014-01-24
PUBLIC RELEASE DATE: 23-Jan-2014 [ | E-mail ] var addthis_pub="eurekalert"; var addthis_options = "favorites, delicious, digg, facebook, twitter, google, newsvine, reddit, slashdot, stumbleupon, buzz, more" Share Contact: Oxford University News & Information Office press.office@admin.ox.ac.uk 01-865-280-532 University of Oxford Can walkies tell who's the leader of the pack? Dogs' paths during group walks could be used to determine leadership roles, social ranks and personality traits ...

Small size in early pregnancy linked to poor heart health later in life

2014-01-24
Poor growth in the first three months of pregnancy ...

Would criminalizing guilty healthcare professionals improve patient care?

2014-01-24
The UK government is considering whether to adopt a recommendation to introduce a ...

Watching molecules morph into memories

2014-01-24
PUBLIC RELEASE DATE: 23-Jan-2014 [ | E-mail ] var addthis_pub="eurekalert"; var addthis_options = "favorites, delicious, digg, facebook, twitter, google, newsvine, reddit, slashdot, stumbleupon, buzz, more" Share Contact: Kim Newman sciencenews@einstein.yu.edu 7-181-430-3101 Albert Einstein College of Medicine Watching molecules morph into memories Breakthrough allows Einstein scientists to probe how memories form in nerve cells VIDEO: In two papers in ...

Risky ripples: Frog's love song may summon kiss of death

2014-01-24
Male túngara frogs call from puddles to attract females. The production of the call incidentally creates ripples that spread across the water. Researchers at the Smithsonian Tropical Research ...

Wisconsin researchers identify key pathway for plant cell growth

2014-01-24
MADISON, Wis. — For plants, the only way to grow is for cells to expand. Unlike animals, cell division in plants happens only within a tiny region of the root and stem apex, making cell expansion ...

Islands in the brain: New circuit shapes memory formation

2014-01-24
Researchers at the RIKEN-MIT Center for Neural Circuit Genetics and MIT's Picower Institute for Learning and Memory have discovered a new brain circuit that shapes memory formation by endowing neurons with the ability to connect ...

Ultrasound training should be implemented early into medical education programs

2014-01-24
A paper in this month's edition of Global Heart (the journal of the World Heart Federation advocates including ultrasound in medical education programmes to realise the full benefits ...

Bats use water ripples to hunt frogs

2014-01-24
As the male túngara frog serenades female frogs from a pond, he creates watery ripples that make him easier to target by rivals and predators such as bats, according to researchers from The University of Texas ...

Study reveals how the brain links memories of sequential events

2014-01-24
CAMBRIDGE, Mass-- Suppose you heard the sound of skidding tires, followed by a car crash. The next time ...

LAST 30 PRESS RELEASES:

Researchers identify molecular brake that regulates synaptic maturation

Study links residual inflammation in psoriasis patients to obesity and fatty liver disease

Vaping increases dependency more than nicotine gum

New scientific articles highlight potential link between microplastics in ultra-processed foods and brain health

New study reveals how 5'LysTTT tRNA fragments protect neurons during botulinum toxin exposure

Prader-Willi syndrome reveals unique link between genetics and psychiatric disorders

Dynamic memory engrams reveal how the brain forms, stores, and updates memories

Researchers decode neural pathways of cognitive flexibility across species

Research team traces evolutionary history of bacterial circadian clock on ancient Earth

Majority of youth overdose deaths from 2018 to 2022 were driven by fentanyl alone

Reducing wait times for hip and knee replacement surgeries

Clinician entrepreneurs can benefit Canada’s health and economy

Scientists discover NELL2’s dual role: boosting bone formation while curbing fat accumulation

Bees facing new threats, putting our survival and theirs at risk

Deep learning can predict lung cancer risk from single LDCT scan

Genomic data shows widespread mpox transmission in West Africa prior to 2022 global outbreak

Research spotlight: Gender differences in primary care physician earnings and outcomes

Eating craved foods with meals lessens cravings, boosts weight loss

Limited evidence suggests calorie restriction may slightly reduce depressive symptoms in people with elevated cardiometabolic risk

U of A researchers developing world's first petahertz-speed phototransistor in ambient conditions

NRL hosts Innovation Day for Industry

Here comes the boom! Studying the effects of rocket launch sonic booms on neighboring communities #ASA188

Researchers capture brain activity with imager that is smaller than an eyelash

A head and a hundred tails: how a branching worm manages reproductive complexity

Investment risk for energy infrastructure construction is highest for nuclear power plants, lowest for solar

Personality traits influence the development of insomnia

Controlling these 8 risk factors may eliminate early death risk for those with high blood pressure

A groundbreaking discovery of a common master switch to cure Alzheimer’s, Parkinson’s, and other brain-related diseases

Novel data streaming software chases light speed from accelerator to supercomputer

UK child sexual abuse survivors lack support - report

[Press-News.org] Stanford scientists use 'virtual earthquakes' to forecast Los Angeles quake risk