(Press-News.org) Contact information: Dan Ferber
dan.ferber@wyss.harvard.edu
617-432-1547
Wyss Institute for Biologically Inspired Engineering at Harvard
Capturing ultrasharp images of multiple cell components at once
New DNA-based, super-resolution microscopy method could simultaneously spot dozens of distinct types of biomolecules
BOSTON -- A new microscopy method could enable scientists to generate snapshots of dozens of different biomolecules at once in a single human cell, a team from the Wyss Institute of Biologically Inspired Engineering at Harvard University reported Sunday in Nature Methods.
Such images could shed light on complex cellular pathways and potentially lead to new ways to diagnose disease, track its prognosis, or monitor the effectiveness of therapies at a cellular level.
Cells often employ dozens or even hundreds of different proteins and RNA molecules to get a complex job done. As a result, cellular job sites can resemble a busy construction site, with many different types of these tiny cellular workers coming and going. Today's methods typically only spot at most three or four types of these tiny workers simultaneously. But to truly understand complex cellular functions, it's important to be able to visualize most or all of those workers at once, said Peng Yin, Ph.D., a Core Faculty member at the Wyss Institute and Assistant Professor of Systems Biology at Harvard Medical School.
"If you can see only a few things at a time, you are missing the big picture," Yin said.
Yin's team sought a way to take aerial views of job sites that could spot up to dozens of types of biomolecules that make up large cellular work crews.
To capture ultrasharp images of biomolecules, they had to overcome laws of physics that stymied microscopists for most of the last century. When two objects are closer than about 200 nanometers apart -- about one five-hundredth the width of a human hair -- they cannot be distinguished using a traditional light microscope: the viewer sees one blurry blob where in reality there are two objects.
Since the mid-1990s, scientists have developed several ways to overcome this problem using combinations of specialized optics, special fluorescent proteins or dyes that tag cellular components.
Ralf Jungmann, Ph.D., now a postdoctoral fellow working with Yin at the Wyss Institute and Harvard Medical School, helped develop one of those super-resolution methods, called DNA-PAINT, as a graduate student. DNA-PAINT can create ultrasharp snapshots of up to three cellular workers at once by labeling them with different colored dyes.
To visualize cellular job sites with crews of dozens of cellular workers, Yin's team, including Jungmann, Maier Avendano, M.S., a graduate student at Harvard Medical School, and Johannes Woehrstein, a postgraduate research fellow at the Wyss Institute, modified DNA-PAINT to create a new method called Exchange-PAINT.
Exchange-PAINT relies on the fact that DNA strands with the correct sequence of letters, or nucleotides, bind specifically to partner strands with complementary sequences. The researchers label a biomolecule they want to visualize with a short DNA tag, then add to the solution a partner strand carrying a fluorescent dye that lights up only when the two strands pair up. When that partner strand binds the tagged biomolecule, it lights up, then lets go, causing the biomolecule to "blink" at a precise rate the researchers can control. The researchers use this blinking to obtain ultrasharp images.
They then repeat the process to visualize a second target, a third, and so on. Then they overlay the resulting images to create a composite image in which each biomolecule – each cellular worker -- is assigned a different color. This allows them to create false-color images that simultaneously show many types of biomolecules — far more than they could simultaneously visualize by labeling them with different colored dyes. And these false-color images allow them to spot enough cellular workers at once to capture the entire scene.
To test Exchange-PAINT, the researchers created 10 unique pieces of folded DNA, or DNA origami, that resembled the numerals 0 through 9. These numerals could be resolved with less than 10 nanometers resolution, or one-twentieth of the diffraction limit.
The team was able to use Exchange-PAINT to capture clear images of the 10 different types of miniscule DNA origami structures in one image. They also used the method to capture detailed, ultrasharp images of fixed human cells, with each color tagging an important cellular component – microtubules, mitochondria, Golgi apparatus, or peroxisomes.
Yin expects the method, with further development, to be able to visualize dozens of cellular components at once.
"Peng's exciting new imaging work gives biologists an important new tool to understand how multiple cellular components work together in complex pathways," said Wyss Institute Founding Director Don Ingber, M.D., Ph.D. "I expect insights from those experiments to lead to new ways to diagnose and monitor disease." Ingber is also the Judah Folkman Professor of Vascular Biology at Harvard Medical School and Boston Children's Hospital and Professor of Bioengineering at Harvard School of Engineering & Applied Sciences.
INFORMATION:
In addition to Yin, Jungmann, Avendano, and Woehrstein, the team included Mingjie Dai, a graduate student in biophysics at Harvard University and William Shih, Ph.D. a Wyss Institute Core Faculty member who is also Associate Professor of Biological Chemistry and Molecular Pharmacology at Harvard Medical School and Associate Professor of Cancer Biology at the Dana-Farber Cancer Institute. The work was funded by the National Institutes of Health, the Office of Naval Research, the National Science Foundation, the Humboldt Foundation, and the Wyss Institute.
PRESS CONTACT
Wyss Institute for Biologically Inspired Engineering at Harvard University
Dan Ferber
dan.ferber@wyss.harvard.edu
+1 617-432-1547
IMAGES AVAILABLE
About the Wyss Institute for Biologically Inspired Engineering at Harvard University
The Wyss Institute for Biologically Inspired Engineering at Harvard University uses Nature's design principles to develop bioinspired materials and devices that will transform medicine and create a more sustainable world. Working as an alliance among Harvard's Schools of Medicine, Engineering, and Arts & Sciences, and in partnership with Beth Israel Deaconess Medical Center, Brigham and Women's Hospital, Boston Children's Hospital, Dana Farber Cancer Institute, Massachusetts General Hospital, the University of Massachusetts Medical School, Spaulding Rehabilitation Hospital, Boston University, Tufts University, and Charité - Universitätsmedizin Berlin, the Institute crosses disciplinary and institutional barriers to engage in high-risk research that leads to transformative technological breakthroughs. By emulating Nature's principles, Wyss researchers are developing innovative new engineering solutions for healthcare, energy, architecture, robotics, and manufacturing. These technologies are translated into commercial products and therapies through collaborations with clinical investigators, corporate alliances, and new start-ups. The Wyss Institute recently won the prestigious World Technology Network award for innovation in biotechnology.
Capturing ultrasharp images of multiple cell components at once
New DNA-based, super-resolution microscopy method could simultaneously spot dozens of distinct types of biomolecules
2014-02-03
ELSE PRESS RELEASES FROM THIS DATE:
Nature can, selectively, buffer human-caused global warming
2014-02-03
Jerusalem, February 2, 2014 – Can naturally occurring processes selectively buffer the full brunt of global warming caused by greenhouse gas emissions resulting ...
JCI early table of contents for Feb. 3, 2014
2014-02-03
Methylation signature correlates with acute myeloid leukemia survival
Acute myeloid leukemia (AML) is characterized by the inappropriate replacement of normal bone marrow with white blood cells due to dysfunctional ...
Can a protein controlling blood pressure enhance immune responses and prevent Alzheimer's?
2014-02-03
LOS ANGELES (EMBARGOED UNTIL 12 ...
NSAIDs do not increase risk of miscarriages: Study
2014-02-03
Women who take nonsteroidal anti-inflammatory drugs (NSAIDs) during pregnancy are not at increased risk of miscarriages, confirms a new study published in CMAJ (Canadian Medical Association ...
New guideline recommends delaying dialysis for chronic kidney disease
2014-02-03
For asymptomatic adults with chronic kidney disease who will need dialysis, an intent-to-defer approach is recommended over an ...
Chemical stem cell signature predicts treatment response for acute myeloid leukemia
2014-02-03
February 3, 2014 — (Bronx, NY) — Researchers at Albert Einstein College of Medicine of Yeshiva University and Montefiore Medical Center have found a chemical "signature" ...
Study finds intervention leads to reduction of C-sections and neonatal morbidities
2014-02-03
In a study to be presented on Feb. 6 in an oral plenary session at 8 a.m. CST, at the Society for Maternal-Fetal Medicine's annual meeting, The Pregnancy Meeting™, in ...
Study's results encourage expectant monitoring for women with hypertension
2014-02-03
In a study to be presented on Feb. 6 at 8:15 a.m. CST, at the Society for Maternal-Fetal ...
Study finds NIPT detects more than 80 percent of chromosomal abnormalities
2014-02-03
In a study to be presented on Feb. 6 at 9 a.m. CST, at the Society for Maternal-Fetal ...
Study associates gene with cerebral palsy and death in very preterm babies
2014-02-03
In a study to be presented on Feb. 6 at 2:45 p.m. CST, at the Society for Maternal-Fetal Medicine's annual meeting, The Pregnancy Meeting™, in New Orleans, researchers will report ...
LAST 30 PRESS RELEASES:
Mysterious ‘Dark Dwarfs’ may be hiding at the heart of the Milky Way
Real-world data shows teclistamab can benefit many multiple myeloma patients who would have been ineligible for pivotal trial
Scientists reveal how a key inflammatory molecule triggers esophageal muscle contraction
Duration of heat waves accelerating faster than global warming
New mathematical insights into Lagrangian turbulence
Clinical trials reveal promising alternatives to high-toxicity tuberculosis drug
Artificial solar eclipses in space could shed light on Sun
Probing the cosmic Dark Ages from the far side of the Moon
UK hopes to bolster space weather forecasts with Europe's first solar storm monitor
Can one video change a teen's mindset? New study says yes - but there’s a catch
How lakes connect to groundwater critical for resilience to climate change, research finds
Youngest basaltic lunar meteorite fills nearly one billion-year gap in Moon’s volcanic history
Cal Poly Chemistry professor among three U.S. faculty to be honored for contributions to chemistry instruction
Stoichiometric crystal shows promise in quantum memory
Study sheds light on why some prostate tumors are resistant to treatment
Tree pollen reveals 150,000 years of monsoon history—and a warning for Australia’s northern rainfall
Best skin care ingredients revealed in thorough, national review
MicroRNA is awarded an Impact Factor Ranking for 2024
From COVID to cancer, new at-home test spots disease with startling accuracy
Now accepting submissions: Special Collection on Cognitive Aging
Young adult literature is not as young as it used to be
Can ChatGPT actually “see” red? New results of Google-funded study are nuanced
Turning quantum bottlenecks into breakthroughs
Cancer-fighting herpes virus shown to be an effective treatment for some advanced melanoma
Eliminating invasive rats may restore the flow of nutrients across food chain networks in Seychelles
World’s first: Lithuanian scientists’ discovery may transform OLED technology and explosives detection
Rice researchers develop superstrong, eco-friendly materials from bacteria
Itani studying translation potential of secure & efficient software updates in industrial internet of things architectures
Elucidating the source process of the 2021 south sandwich islands tsunami earthquake
Zhu studying use of big data in verification of route choice models
[Press-News.org] Capturing ultrasharp images of multiple cell components at onceNew DNA-based, super-resolution microscopy method could simultaneously spot dozens of distinct types of biomolecules