PRESS-NEWS.org - Press Release Distribution
PRESS RELEASES DISTRIBUTION

Good hair day: New technique grows tiny 'hairy' materials at the microscale

2014-02-05
(Press-News.org) Contact information: Louise Lerner
Louise@anl.gov
630-252-5526
DOE/Argonne National Laboratory
Good hair day: New technique grows tiny 'hairy' materials at the microscale

Scientists at the U.S. Department of Energy's Argonne National Laboratory attacked a tangled problem by developing a new technique to grow tiny "hairy" materials that assemble themselves at the microscale.

The key ingredient is epoxy, which is added to a mixture of hardener and solvent inside an electric cell. Then the scientists run an alternating current through the cell and watch long, twisting fibers spring up. It looks like the way Chia Pets grow in commercials.

"The process is very simple, the materials are cheap and available and they can grow on almost every surface we've tried," said Argonne physicist Igor Aronson, who co-authored the study.

By tweaking the process, the team can grow many different shapes: short forests of dense straight hairs, long branching strands or "mushrooms" with tiny pearls at the tips. Interestingly, though the structures can be permanent, the process is also instantly reversible.

"This is a completely new kind of structure," said Argonne physicist Alexey Snezhko, also a co-author. "With this method, you can support more complex structures that have unique properties."

Scientists are very interested in materials with tiny fibers for technologies like batteries, photovoltaic cells or sensors. For one, "hairy" materials offer up a lot of surface area. Many chemical reactions depend on two surfaces making contact with one another, so a structure that exposes a lot of surface area will speed the process along. (For example, grinding coffee beans gives the coffee more flavor than soaking whole beans in water.) Micro-size hairs can also make a surface that repels water, called superhydrophobic, or dust.

The tiny-fiber structure is so useful that it's evolved several times in nature, Aronson pointed out. For example, blood vessels are lined with a layer of similar tiny protein "hairs," thought to help reduce wear and tear by blood cells and bacterial infections, among other properties.

Currently, the primary methods of creating interesting shapes at small scales is lithography, a type of "printing" where researchers lay a pattern on the material and the rest of it is melted or etched away. But it's hard to make very complex structures with this method; it's hard to control; and the results aren't always uniform.

"These polymers assemble themselves," Snezhko explained, "which is much easier and less labor-intensive than lithography."

In one experiment the researchers used a process called atomic layer deposition that deposits a molecule-thick layer of material over the entire hairy structure, like a fresh blanket of snow, to add a layer of semiconductor material. Semiconductors are essential ingredients in many technologies, such as solar cells and electronics.

This provided proof of concept that the polymer could be incorporated into semiconductor-based renewable energy technologies. It also proved that it could survive high temperatures, up to 150°C, an essential property for many manufacturing processes.

Right now the structures are about a single micron thick—you could stack 100 of them to reach the width of a sheet of paper. Aronson and Snezhko said their next goal is to get them even smaller, to the nanoscale.

VIDEO: These tiny "hairs " assemble themselves almost instantly when scientists apply an alternating electrical current. The entire field of view is smaller than the thickness of a credit card. Argonne National...
Click here for more information.



INFORMATION:

The study, "Self-assembled tunable networks of sticky colloidal particles," was published last week in Nature Communications. Argonne scientists Arnaud Demortière and Thomas Proslier were co-authors on the study, along with Nicholas Becker (Illinois Institute of Technology) and Maksim Sapozhnikov (Russian Academy of Sciences and N.I. Lobachevsky State University).

Funding for the research came from the U.S. Department of Energy's Office of Science and the Russian Foundation for Basic Research. Use of Argonne's Center for Nanoscale Materials to characterize the samples was supported by the DOE's Office of Science, Office of Basic Energy Sciences.

Argonne National Laboratory seeks solutions to pressing national problems in science and technology. The nation's first national laboratory, Argonne conducts leading-edge basic and applied scientific research in virtually every scientific discipline. Argonne researchers work closely with researchers from hundreds of companies, universities, and federal, state and municipal agencies to help them solve their specific problems, advance America's scientific leadership and prepare the nation for a better future. With employees from more than 60 nations, Argonne is managed by UChicago Argonne, LLC for the U.S. Department of Energy's Office of Science.

The Center for Nanoscale Materials at Argonne National Laboratory is one of the five DOE Nanoscale Science Research Centers (NSRCs), premier national user facilities for interdisciplinary research at the nanoscale, supported by the DOE Office of Science. Together the NSRCs comprise a suite of complementary facilities that provide researchers with state-of-the-art capabilities to fabricate, process, characterize and model nanoscale materials, and constitute the largest infrastructure investment of the National Nanotechnology Initiative. The NSRCs are located at DOE's Argonne, Brookhaven, Lawrence Berkeley, Oak Ridge and Sandia and Los Alamos National Laboratories.

DOE's Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit science.energy.gov.



ELSE PRESS RELEASES FROM THIS DATE:

Story tips from the Department of Energy's Oak Ridge National Laboratory, February 2014

2014-02-05
ENERGY – LEDs to light UT arena . . . With the installation this month of LED fixtures, the University of Tennessee's Thompson-Boling Arena will become the first major sports ...

Brain scans show we take risks because we can't stop ourselves

2014-02-05
A new study correlating brain activity with how people make decisions ...

For viewers, Sochi will be first 'fully mobile' Olympics

2014-02-05
Akron, Ohio, Feb. 4, 2014 — The Sochi Winter Olympics, Feb. 7-23, are expected to generate a dramatic rise in Web and mobile viewing, but that does not mean viewers will ...

Nerve block eases troublesome hot flashes

2014-02-05
CLEVELAND, Ohio (February 5, 2014)—Injecting a little anesthetic near a nerve bundle ...

Wider-faced dates more attractive as short-term mates

2014-02-05
Women may perceive men with wider faces as more dominant and more attractive for short-term relationships, according to a new study in Psychological Science, a journal of the Association ...

Research shows that reported oil sands emissions greatly underestimated

2014-02-04
TORONTO, ON - A new comprehensive modeling assessment of contamination in the Athabasca Oil Sands Region indicates that officially reported emissions of certain hazardous air pollutants have ...

'Not my child' -- Most parents fail to recognize if their child is overweight

2014-02-04
LINCOLN, Neb., Feb. 3, 2014 – In the idyllic town of Lake Wobegon, all the children are above average. And, judging by a new study by University of Nebraska-Lincoln researchers, ...

Appearance of Lyme disease rash can help predict how bacteria spreads through body

2014-02-04
PUBLIC RELEASE DATE: 4-Feb-2014 [ | E-mail ] var addthis_pub="eurekalert"; var addthis_options = "favorites, delicious, digg, facebook, twitter, google, newsvine, reddit, slashdot, stumbleupon, buzz, more" Share Contact: Mary Beth O'Leary moleary@cell.com 617-397-2802 Cell Press Appearance of Lyme disease rash can help predict how bacteria spreads through body VIDEO: This is a simulation that shows the development of a Lyme disease rash in time. ...

Shivering could elicit some of the same benefits as exercise

2014-02-04
It's common knowledge that shivering in the cold is part of the body's attempt to stay warm. According to new research into the mechanisms involved, shivering releases a hormone that stimulates fat tissue to produce ...

Study reveals how cancer cells thrive in oxygen-starved tumors

2014-02-04
COLUMBUS, Ohio – A new study identifies the molecular pathway that enables cancer cells to grow in areas of a tumor where oxygen levels are low, a condition called hypoxia. The findings by researchers ...

LAST 30 PRESS RELEASES:

Cost of copper must rise double to meet basic copper needs

A gel for wounds that won’t heal

Iron, carbon, and the art of toxic cleanup

Organic soil amendments work together to help sandy soils hold water longer, study finds

Hidden carbon in mangrove soils may play a larger role in climate regulation than previously thought

Weight-loss wonder pills prompt scrutiny of key ingredient

Nonprofit leader Diane Dodge to receive 2026 Penn Nursing Renfield Foundation Award for Global Women’s Health

Maternal smoking during pregnancy may be linked to higher blood pressure in children, NIH study finds

New Lund model aims to shorten the path to life-saving cell and gene therapies

Researchers create ultra-stretchable, liquid-repellent materials via laser ablation

Combining AI with OCT shows potential for detecting lipid-rich plaques in coronary arteries

SeaCast revolutionizes Mediterranean Sea forecasting with AI-powered speed and accuracy

JMIR Publications’ JMIR Bioinformatics and Biotechnology invites submissions on Bridging Data, AI, and Innovation to Transform Health

Honey bees navigate more precisely than previously thought

Air pollution may directly contribute to Alzheimer’s disease

Study finds early imaging after pediatric UTIs may do more harm than good

UC San Diego Health joins national research for maternal-fetal care

New biomarker predicts chemotherapy response in triple-negative breast cancer

Treatment algorithms featured in Brain Trauma Foundation’s update of guidelines for care of patients with penetrating traumatic brain injury

Over 40% of musicians experience tinnitus; hearing loss and hyperacusis also significantly elevated

Artificial intelligence predicts colorectal cancer risk in ulcerative colitis patients

Mayo Clinic installs first magnetic nanoparticle hyperthermia system for cancer research in the US

Calibr-Skaggs and Kainomyx launch collaboration to pioneer novel malaria treatments

JAX-NYSCF Collaborative and GSK announce collaboration to advance translational models for neurodegenerative disease research

Classifying pediatric brain tumors by liquid biopsy using artificial intelligence

Insilico Medicine initiates AI driven collaboration with leading global cancer center to identify novel targets for gastroesophageal cancers

Immunotherapy plus chemotherapy before surgery shows promise for pancreatic cancer

A “smart fluid” you can reconfigure with temperature

New research suggests myopia is driven by how we use our eyes indoors

Scientists develop first-of-its-kind antibody to block Epstein Barr virus

[Press-News.org] Good hair day: New technique grows tiny 'hairy' materials at the microscale