PRESS-NEWS.org - Press Release Distribution
PRESS RELEASES DISTRIBUTION

Scientists reprogram skin cells into insulin-producing pancreas cells

Gladstone-led study represents important step towards a cure for type 1 diabetes

2014-02-06
(Press-News.org) Contact information: Anne Holden
anne.holden@gladstone.ucsf.edu
415-734-2534
Gladstone Institutes
Scientists reprogram skin cells into insulin-producing pancreas cells Gladstone-led study represents important step towards a cure for type 1 diabetes SAN FRANCISCO, CA—February 6, 2014—A cure for type 1 diabetes has long eluded even the top experts. Not because they do not know what must be done—but because the tools did not exist to do it. But now scientists at the Gladstone Institutes, harnessing the power of regenerative medicine, have developed a technique in animal models that could replenish the very cells destroyed by the disease. The team's findings, published online today in the journal Cell Stem Cell, are an important step towards freeing an entire generation of patients from the life-long injections that characterize this devastating disease.

Type 1 diabetes, which usually manifests during childhood, is caused by the destruction of ß-cells, a type of cell that normally resides in the pancreas and produces a hormone called insulin. Without insulin, the body's organs have difficulty absorbing sugars, such as glucose, from the blood. Once a death sentence, the disease can now be managed with regular glucose monitoring and insulin injections. A more permanent solution, however, would be to replace the missing ß-cells. But these cells are hard to come by, so researchers have looked towards stem cell technology as a way to make them.

"The power of regenerative medicine is that it can potentially provide an unlimited source of functional, insulin-producing ß-cells that can then be transplanted into the patient," said Dr. Ding, who is also a professor at the University of California, San Francisco (UCSF), with which Gladstone is affiliated. "But previous attempts to produce large quantities of healthy ß-cells—and to develop a workable delivery system—have not been entirely successful. So we took a somewhat different approach."

One of the major challenges to generating large quantities of ß-cells is that these cells have limited regenerative ability; once they mature it's difficult to make more. So the team decided to go one step backwards in the life cycle of the cell.

The team first collected skin cells, called fibroblasts, from laboratory mice. Then, by treating the fibroblasts with a unique 'cocktail' of molecules and reprogramming factors, they transformed the cells into endoderm-like cells. Endoderm cells are a type of cell found in the early embryo, and which eventually mature into the body's major organs—including the pancreas.

"Using another chemical cocktail, we then transformed these endoderm-like cells into cells that mimicked early pancreas-like cells, which we called PPLC's," said Gladstone Postdoctoral Scholar Ke Li, PhD, the paper's lead author. "Our initial goal was to see whether we could coax these PPLC's to mature into cells that, like ß-cells, respond to the correct chemical signals and—most importantly—secrete insulin. And our initial experiments, performed in a petri dish, revealed that they did."

The research team then wanted to see whether the same would occur in live animal models. So they transplanted PPLC's into mice modified to have hyperglycemia (high glucose levels), a key indicator of diabetes.

"Importantly, just one week post-transplant, the animals' glucose levels started to decrease gradually approaching normal levels," continued Dr. Li. "And when we removed the transplanted cells, we saw an immediate glucose spike, revealing a direct link between the transplantation of the PPLC's and reduced hyperglycemia."

But it was when the team tested the mice eight weeks post-transplant that they saw more dramatic changes: the PPLC's had given rise to fully functional, insulin-secreting ß-cells.

"These results not only highlight the power of small molecules in cellular reprogramming, they are proof-of-principle that could one day be used as a personalized therapeutic approach in patients," explained Dr. Ding.

"I am particularly excited about the prospect of translating these findings to the human system," said Matthias Hebrok, PhD, one of the study's authors and director of the UCSF Diabetes Center. "Most immediately, this technology in human cells could significantly advance our understanding of how inherent defects in ß-cells result in diabetes, bringing us notably closer to a much-needed cure." ### Saiyong Zhu, PhD, Shaohua Xu, PhD, Tao Xu, PhD, Yu Zhang, PhD, and Tianhua Ma, PhD also participated in this research at Gladstone, which was supported by the Roddenberry Foundation, the Eunice Kennedy Shriver National Institute of Child Health and Human Development, the National Energy Institute, the National Heart, Lung and Blood Institute, the National Institute of Mental Health/National Institutes of Health, the California Institute for Regenerative Medicine, the United States Department of Defense and the William K. Bowes, Jr. Foundation.

About the Gladstone Institutes Gladstone is an independent and nonprofit biomedical-research organization dedicated to accelerating the pace of scientific discovery and innovation to prevent, treat and cure cardiovascular, viral and neurological diseases. Gladstone is affiliated with the University of California, San Francisco.


ELSE PRESS RELEASES FROM THIS DATE:

Powerful bacterial immune response defined by new study

2014-02-06
T-cells, the elite guard of the immune system in humans and other mammals, ignore normal biologic protocol and swing into high gear when attacked by certain fast-moving bacteria, reports a team of researchers ...

Histones may hold the key to the generation of totipotent stem cells

2014-02-06
One major challenge in stem cell research has been to reprogram differentiated cells to a totipotent state. Researchers from RIKEN in Japan have identified a duo of histone proteins that dramatically enhance the generation ...

The 'entrance exam' that is key to a successful pregnancy

2014-02-06
Researchers have discovered how an 'entrance exam' set by the womb determines if the implantation of an embryo is successful; potentially a milestone for advances in pregnancy treatments. The new study, led ...

New disease gene discovery sheds light on cause of bone marrow failure

2014-02-06
The study, published in The American Journal of Human Genetics, detected and identified a new disease gene (ERCC6L2). In its normal form, the gene plays a key role in protecting ...

Link confirmed between salmon migration, magnetic field

2014-02-06
CORVALLIS, Ore. – A team of scientists last year presented evidence of a correlation between the migration patterns of ocean salmon and the Earth's magnetic field, suggesting it may help explain how ...

Brain asymmetry improves processing of sensory information

2014-02-06
Fish that have symmetric brains show defects in processing information about sights and smells, according to the results of a new study into how asymmetry in the brain affects processing of sensory information. ...

Research on pigeon color reveals mutation hotspot

2014-02-06
A University of Texas at Arlington team exploring pigeons as a model for vertebrate evolution has uncovered that mutations and interactions among just three genes create a wide variety of color variations. ...

Columbia study finds hospitals don't follow infection prevention rules

2014-02-06
(NEW YORK, NY, February 6, 2014) – While most hospitals have polices in place to prevent health care-associated infections, ...

Intervention in first 1,000 days vital to fulfilling childhood potential

2014-02-06
Safeguarding the healthy development of the next generation is vital for the long term success of the United Nation's ...

Research gives new insight into diet of large ancient mammals

2014-02-06
An international team of researchers, including Professor Mary Edwards at the University of Southampton, has used DNA testing to give a unique view of the diet of large mammals which roamed the ...

LAST 30 PRESS RELEASES:

New design tackles heat challenges in high-power fiber lasers

Rapid fabrication of self-propelled, steerable magnetic microcatheters for precision medicine

Poor kidney health linked to higher levels of Alzheimer’s biomarkers in blood

A metamaterial that bridges air and water

Evaluating building materials for climate impact and noise suppression

Scores of dinosaurs walked and swam along a Bolivian shoreline

Captive bottlenose dolphins vary vocalizations during enrichment activities

Adults who want children favor older-looking partners (but not for their money), study suggests

Authoritative parenting styles are associated with better mental health and self-esteem among adolescents, while authoritarian parenting styles are associated with depression and lower self-esteem and

A rose by any other name? Not necessarily—how words sound aesthetically correlates with their memorability, study finds

The odds of iron deficiency in adolescent girls are almost 14 times higher among those who experience heavy menstruation and follow a meat-restricted diet, compared to girls with normal menstruation w

Sperm tails and male infertility: Critical protein revealed by ultrastructure microscope

Bumblebees launch a three-stage defensive response when their nest is disturbed

Experimental drug repairs DNA damage caused by disease

Study shows common childhood virus can drive bladder cancer development

New test distinguishes vaccine-induced false positives from active HIV infection

Becoming human in southern Africa: What ancient hunter-gatherer genomes reveal

The transformation of adult heart transplantation in the United States and Western Europe

American Physical Society launches APS Open Science to expand global participation in trusted physics research

Family dogs boost adolescent mental health through the microbiome

Prehab can improve recovery after surgery, but barriers remain

Ten-thousand-year-old genomes from southern Africa change picture of human evolution

NeuMap: a pioneering map of neutrophils that redefines their role in health, infection, and inflammation

KATRIN tightens the net around the elusive sterile neutrino

Antipsychotic medication use by older adults

Statewide analysis quantifies life-saving potential of stop the bleed

Complex life developed earlier than previously thought, new study reveals

Semaglutide and early-stage metabolic abnormalities in individuals with schizophrenia spectrum disorders

Robert Wood Johnson University Hospital and Rutgers Robert Wood Johnson Medical School receive National Rare Disease Center of Excellence recognition

The Mohn Prize for 2026 awarded to Canadian John Smol

[Press-News.org] Scientists reprogram skin cells into insulin-producing pancreas cells
Gladstone-led study represents important step towards a cure for type 1 diabetes