(Press-News.org) Contact information: Anne Holden
anne.holden@gladstone.ucsf.edu
415-734-2534
Gladstone Institutes
Scientists reprogram skin cells into insulin-producing pancreas cells
Gladstone-led study represents important step towards a cure for type 1 diabetes
SAN FRANCISCO, CA—February 6, 2014—A cure for type 1 diabetes has long eluded even the top experts. Not because they do not know what must be done—but because the tools did not exist to do it. But now scientists at the Gladstone Institutes, harnessing the power of regenerative medicine, have developed a technique in animal models that could replenish the very cells destroyed by the disease. The team's findings, published online today in the journal Cell Stem Cell, are an important step towards freeing an entire generation of patients from the life-long injections that characterize this devastating disease.
Type 1 diabetes, which usually manifests during childhood, is caused by the destruction of ß-cells, a type of cell that normally resides in the pancreas and produces a hormone called insulin. Without insulin, the body's organs have difficulty absorbing sugars, such as glucose, from the blood. Once a death sentence, the disease can now be managed with regular glucose monitoring and insulin injections. A more permanent solution, however, would be to replace the missing ß-cells. But these cells are hard to come by, so researchers have looked towards stem cell technology as a way to make them.
"The power of regenerative medicine is that it can potentially provide an unlimited source of functional, insulin-producing ß-cells that can then be transplanted into the patient," said Dr. Ding, who is also a professor at the University of California, San Francisco (UCSF), with which Gladstone is affiliated. "But previous attempts to produce large quantities of healthy ß-cells—and to develop a workable delivery system—have not been entirely successful. So we took a somewhat different approach."
One of the major challenges to generating large quantities of ß-cells is that these cells have limited regenerative ability; once they mature it's difficult to make more. So the team decided to go one step backwards in the life cycle of the cell.
The team first collected skin cells, called fibroblasts, from laboratory mice. Then, by treating the fibroblasts with a unique 'cocktail' of molecules and reprogramming factors, they transformed the cells into endoderm-like cells. Endoderm cells are a type of cell found in the early embryo, and which eventually mature into the body's major organs—including the pancreas.
"Using another chemical cocktail, we then transformed these endoderm-like cells into cells that mimicked early pancreas-like cells, which we called PPLC's," said Gladstone Postdoctoral Scholar Ke Li, PhD, the paper's lead author. "Our initial goal was to see whether we could coax these PPLC's to mature into cells that, like ß-cells, respond to the correct chemical signals and—most importantly—secrete insulin. And our initial experiments, performed in a petri dish, revealed that they did."
The research team then wanted to see whether the same would occur in live animal models. So they transplanted PPLC's into mice modified to have hyperglycemia (high glucose levels), a key indicator of diabetes.
"Importantly, just one week post-transplant, the animals' glucose levels started to decrease gradually approaching normal levels," continued Dr. Li. "And when we removed the transplanted cells, we saw an immediate glucose spike, revealing a direct link between the transplantation of the PPLC's and reduced hyperglycemia."
But it was when the team tested the mice eight weeks post-transplant that they saw more dramatic changes: the PPLC's had given rise to fully functional, insulin-secreting ß-cells.
"These results not only highlight the power of small molecules in cellular reprogramming, they are proof-of-principle that could one day be used as a personalized therapeutic approach in patients," explained Dr. Ding.
"I am particularly excited about the prospect of translating these findings to the human system," said Matthias Hebrok, PhD, one of the study's authors and director of the UCSF Diabetes Center. "Most immediately, this technology in human cells could significantly advance our understanding of how inherent defects in ß-cells result in diabetes, bringing us notably closer to a much-needed cure."
###
Saiyong Zhu, PhD, Shaohua Xu, PhD, Tao Xu, PhD, Yu Zhang, PhD, and Tianhua Ma, PhD also participated in this research at Gladstone, which was supported by the Roddenberry Foundation, the Eunice Kennedy Shriver National Institute of Child Health and Human Development, the National Energy Institute, the National Heart, Lung and Blood Institute, the National Institute of Mental Health/National Institutes of Health, the California Institute for Regenerative Medicine, the United States Department of Defense and the William K. Bowes, Jr. Foundation.
About the Gladstone Institutes
Gladstone is an independent and nonprofit biomedical-research organization dedicated to accelerating the pace of scientific discovery and innovation to prevent, treat and cure cardiovascular, viral and neurological diseases. Gladstone is affiliated with the University of California, San Francisco.
Scientists reprogram skin cells into insulin-producing pancreas cells
Gladstone-led study represents important step towards a cure for type 1 diabetes
2014-02-06
ELSE PRESS RELEASES FROM THIS DATE:
Powerful bacterial immune response defined by new study
2014-02-06
T-cells, the elite guard of the immune system in humans and other
mammals, ignore normal biologic protocol and swing into high gear
when attacked by certain fast-moving bacteria, reports a team of
researchers ...
Histones may hold the key to the generation of totipotent stem cells
2014-02-06
One major challenge in stem cell research has been to reprogram differentiated cells to a totipotent state. Researchers from RIKEN in Japan have identified a duo of histone proteins that dramatically enhance the generation ...
The 'entrance exam' that is key to a successful pregnancy
2014-02-06
Researchers have discovered how an 'entrance exam' set by the womb determines if the implantation of an embryo is successful; potentially a milestone for advances in pregnancy treatments.
The new study, led ...
New disease gene discovery sheds light on cause of bone marrow failure
2014-02-06
The study, published in The American Journal of Human Genetics, detected and identified a new disease gene (ERCC6L2). In its normal form, the gene plays a key role in protecting ...
Link confirmed between salmon migration, magnetic field
2014-02-06
CORVALLIS, Ore. – A team of scientists last year presented evidence of a correlation between the migration patterns of ocean salmon and the Earth's magnetic field, suggesting it may help explain how ...
Brain asymmetry improves processing of sensory information
2014-02-06
Fish that have symmetric brains show defects in processing information about sights and smells, according to the results of a new study into how asymmetry in the brain affects processing of sensory information. ...
Research on pigeon color reveals mutation hotspot
2014-02-06
A University of Texas at Arlington team exploring pigeons as a model for vertebrate evolution has uncovered that mutations and interactions among just three genes create a wide variety of color variations. ...
Columbia study finds hospitals don't follow infection prevention rules
2014-02-06
(NEW YORK, NY, February 6, 2014) – While most hospitals have polices in place to prevent health care-associated infections, ...
Intervention in first 1,000 days vital to fulfilling childhood potential
2014-02-06
Safeguarding the healthy development of the next generation is vital for the long term success of the United Nation's ...
Research gives new insight into diet of large ancient mammals
2014-02-06
An international team of researchers, including Professor Mary Edwards at the University of Southampton, has used DNA testing to give a unique view of the diet of large mammals which roamed the ...
LAST 30 PRESS RELEASES:
Fig trees convert atmospheric CO2 to stone
Intra-arterial tenecteplase for acute stroke after successful endovascular therapy
Study reveals beneficial microbes that can sustain yields in unfertilized fields
Robotic probe quickly measures key properties of new materials
Climate change cuts milk production, even when farmers cool their cows
Frozen, but not sealed: Arctic Ocean remained open to life during ice ages
Some like it cold: Cryorhodopsins
Demystifying gut bacteria with AI
Human wellbeing on a finite planet towards 2100: new study shows humanity at a crossroads
Unlocking the hidden biodiversity of Europe’s villages
Planned hydrogen refuelling stations may lead to millions of euros in yearly losses
Planned C-sections increase the risk of certain childhood cancers
Adults who have survived childhood cancer are at increased risk of severe COVID-19
Drones reveal extreme coral mortality after bleaching
New genetic finding uncovers hidden cause of arsenic resistance in acute promyelocytic leukemia
Native habitats hold the key to the much-loved smashed avocado’s future
Using lightning to make ammonia out of thin air
Machine learning potential-driven insights into pH-dependent CO₂ reduction
Physician associates provide safe care for diagnosed patients when directly supervised by a doctor
How game-play with robots can bring out their human side
Asthma: patient expectations influence the course of the disease
UNM physician tests drug that causes nerve tissue to emit light, enabling faster, safer surgery
New study identifies EMP1 as a key driver of pancreatic cancer progression and poor prognosis
XPR1 identified as a key regulator of ovarian cancer growth through autophagy and immune evasion
Flexible, eco-friendly electronic plastic for wearable tech, sensors
Can the Large Hadron Collider snap string theory?
Stuckeman professor’s new book explores ‘socially sustainable’ architecture
Synthetic DNA nanoparticles for gene therapy
New model to find treatments for an aggressive blood cancer
Special issue of Journal of Intensive Medicine analyzes non-invasive respiratory support
[Press-News.org] Scientists reprogram skin cells into insulin-producing pancreas cellsGladstone-led study represents important step towards a cure for type 1 diabetes