PRESS-NEWS.org - Press Release Distribution
PRESS RELEASES DISTRIBUTION

Scientists reprogram skin cells into insulin-producing pancreas cells

Gladstone-led study represents important step towards a cure for type 1 diabetes

2014-02-06
(Press-News.org) Contact information: Anne Holden
anne.holden@gladstone.ucsf.edu
415-734-2534
Gladstone Institutes
Scientists reprogram skin cells into insulin-producing pancreas cells Gladstone-led study represents important step towards a cure for type 1 diabetes SAN FRANCISCO, CA—February 6, 2014—A cure for type 1 diabetes has long eluded even the top experts. Not because they do not know what must be done—but because the tools did not exist to do it. But now scientists at the Gladstone Institutes, harnessing the power of regenerative medicine, have developed a technique in animal models that could replenish the very cells destroyed by the disease. The team's findings, published online today in the journal Cell Stem Cell, are an important step towards freeing an entire generation of patients from the life-long injections that characterize this devastating disease.

Type 1 diabetes, which usually manifests during childhood, is caused by the destruction of ß-cells, a type of cell that normally resides in the pancreas and produces a hormone called insulin. Without insulin, the body's organs have difficulty absorbing sugars, such as glucose, from the blood. Once a death sentence, the disease can now be managed with regular glucose monitoring and insulin injections. A more permanent solution, however, would be to replace the missing ß-cells. But these cells are hard to come by, so researchers have looked towards stem cell technology as a way to make them.

"The power of regenerative medicine is that it can potentially provide an unlimited source of functional, insulin-producing ß-cells that can then be transplanted into the patient," said Dr. Ding, who is also a professor at the University of California, San Francisco (UCSF), with which Gladstone is affiliated. "But previous attempts to produce large quantities of healthy ß-cells—and to develop a workable delivery system—have not been entirely successful. So we took a somewhat different approach."

One of the major challenges to generating large quantities of ß-cells is that these cells have limited regenerative ability; once they mature it's difficult to make more. So the team decided to go one step backwards in the life cycle of the cell.

The team first collected skin cells, called fibroblasts, from laboratory mice. Then, by treating the fibroblasts with a unique 'cocktail' of molecules and reprogramming factors, they transformed the cells into endoderm-like cells. Endoderm cells are a type of cell found in the early embryo, and which eventually mature into the body's major organs—including the pancreas.

"Using another chemical cocktail, we then transformed these endoderm-like cells into cells that mimicked early pancreas-like cells, which we called PPLC's," said Gladstone Postdoctoral Scholar Ke Li, PhD, the paper's lead author. "Our initial goal was to see whether we could coax these PPLC's to mature into cells that, like ß-cells, respond to the correct chemical signals and—most importantly—secrete insulin. And our initial experiments, performed in a petri dish, revealed that they did."

The research team then wanted to see whether the same would occur in live animal models. So they transplanted PPLC's into mice modified to have hyperglycemia (high glucose levels), a key indicator of diabetes.

"Importantly, just one week post-transplant, the animals' glucose levels started to decrease gradually approaching normal levels," continued Dr. Li. "And when we removed the transplanted cells, we saw an immediate glucose spike, revealing a direct link between the transplantation of the PPLC's and reduced hyperglycemia."

But it was when the team tested the mice eight weeks post-transplant that they saw more dramatic changes: the PPLC's had given rise to fully functional, insulin-secreting ß-cells.

"These results not only highlight the power of small molecules in cellular reprogramming, they are proof-of-principle that could one day be used as a personalized therapeutic approach in patients," explained Dr. Ding.

"I am particularly excited about the prospect of translating these findings to the human system," said Matthias Hebrok, PhD, one of the study's authors and director of the UCSF Diabetes Center. "Most immediately, this technology in human cells could significantly advance our understanding of how inherent defects in ß-cells result in diabetes, bringing us notably closer to a much-needed cure." ### Saiyong Zhu, PhD, Shaohua Xu, PhD, Tao Xu, PhD, Yu Zhang, PhD, and Tianhua Ma, PhD also participated in this research at Gladstone, which was supported by the Roddenberry Foundation, the Eunice Kennedy Shriver National Institute of Child Health and Human Development, the National Energy Institute, the National Heart, Lung and Blood Institute, the National Institute of Mental Health/National Institutes of Health, the California Institute for Regenerative Medicine, the United States Department of Defense and the William K. Bowes, Jr. Foundation.

About the Gladstone Institutes Gladstone is an independent and nonprofit biomedical-research organization dedicated to accelerating the pace of scientific discovery and innovation to prevent, treat and cure cardiovascular, viral and neurological diseases. Gladstone is affiliated with the University of California, San Francisco.


ELSE PRESS RELEASES FROM THIS DATE:

Powerful bacterial immune response defined by new study

2014-02-06
T-cells, the elite guard of the immune system in humans and other mammals, ignore normal biologic protocol and swing into high gear when attacked by certain fast-moving bacteria, reports a team of researchers ...

Histones may hold the key to the generation of totipotent stem cells

2014-02-06
One major challenge in stem cell research has been to reprogram differentiated cells to a totipotent state. Researchers from RIKEN in Japan have identified a duo of histone proteins that dramatically enhance the generation ...

The 'entrance exam' that is key to a successful pregnancy

2014-02-06
Researchers have discovered how an 'entrance exam' set by the womb determines if the implantation of an embryo is successful; potentially a milestone for advances in pregnancy treatments. The new study, led ...

New disease gene discovery sheds light on cause of bone marrow failure

2014-02-06
The study, published in The American Journal of Human Genetics, detected and identified a new disease gene (ERCC6L2). In its normal form, the gene plays a key role in protecting ...

Link confirmed between salmon migration, magnetic field

2014-02-06
CORVALLIS, Ore. – A team of scientists last year presented evidence of a correlation between the migration patterns of ocean salmon and the Earth's magnetic field, suggesting it may help explain how ...

Brain asymmetry improves processing of sensory information

2014-02-06
Fish that have symmetric brains show defects in processing information about sights and smells, according to the results of a new study into how asymmetry in the brain affects processing of sensory information. ...

Research on pigeon color reveals mutation hotspot

2014-02-06
A University of Texas at Arlington team exploring pigeons as a model for vertebrate evolution has uncovered that mutations and interactions among just three genes create a wide variety of color variations. ...

Columbia study finds hospitals don't follow infection prevention rules

2014-02-06
(NEW YORK, NY, February 6, 2014) – While most hospitals have polices in place to prevent health care-associated infections, ...

Intervention in first 1,000 days vital to fulfilling childhood potential

2014-02-06
Safeguarding the healthy development of the next generation is vital for the long term success of the United Nation's ...

Research gives new insight into diet of large ancient mammals

2014-02-06
An international team of researchers, including Professor Mary Edwards at the University of Southampton, has used DNA testing to give a unique view of the diet of large mammals which roamed the ...

LAST 30 PRESS RELEASES:

SPHERE’s debris disk gallery: tell-tale signs of dust and small bodies in distant solar systems

Terrestrial biodiversity grows with tree cover in agricultural landscapes

Experts call for AED placement on every commercial aircraft to boost in-flight cardiac arrest survival rates from 6% to up to 70%

“Proton‑iodine” regulation of protonated polyaniline catalyst for high‑performance electrolytic Zn‑I2 batteries

Directional three‑dimensional macroporous carbon foams decorated with WC1−x nanoparticles derived from salting‑out protein assemblies for highly effective electromagnetic absorption

Tropical Australian study sets new standard for Indigenous-led research

Invitation to co-edit a special issue on intelligent additive manufacturing

Success in measuring nano droplets, a new breakthrough in hydrogen, semiconductor, and battery research​

Shopping for two is stressful

Micro/nano‑reconfigurable robots for intelligent carbon management in confined‑space life‑support systems

Long-term antidepressant use surges in Australia, sparking warnings of overprescribing

To bop or to sway? The music will tell you

Neural network helps detect gunshots from illegal rainforest poaching

New evidence questions the benefit of calcium supplements in pregnancy for preventing pre-eclampsia

A molecular ‘reset button’ for reading the brain through a blood test

Why do some lung transplant patients face higher rejection risk?

New study offers a glimpse into 230,000 years of climate and landscape shifts in the Southwest

Gender-specific supportive environment key to cutting female athletes’ injury risks

Overreliance on AI risks eroding new and future doctors’ critical thinking while reinforcing existing bias

Eating disorders in mums-to-be linked to heightened risk of asthma and wheezing in their kids

Global study backs mandatory strength warm-ups for female athletes

Global analysis: Nearly one in five child deaths linked to growth failure

Flood risks in delta cities are increasing, study finds

New strategic support for UK clean industry with £2 million funding boost

Night workers face inequalities in pay, health, safety and dignity

Black carbon from wheat straw burning shown to curb antibiotic resistance spread in farmlands with plastic mulch residues

SCAI and CRT announce partnership to advance interventional cardiology education, advocacy, and research

Mindfulness may help people disconnect from their smartphones

Event aims to unpack chaos caused by AI slop

Tracking forever chemicals across food web shows not all isomers are distributed equally

[Press-News.org] Scientists reprogram skin cells into insulin-producing pancreas cells
Gladstone-led study represents important step towards a cure for type 1 diabetes