(Press-News.org) Boulder, Colo., USA – The Geological Society of America's top journal, Geology, displays its multidisciplinary best in this latest posting. Earth science disciplines covered include geoarchaeology, climatology, invertebrate paleontology, sedimentology, geomorphology, seismology, planetary geology, geochemistry, glaciology, plate tectonics, mineralogy, and environmental and medical geology. Locations include Mars; Earth's moon; India; the Tibetan Plateau; the Saskatchewan River; L'Aquila, Italy; the Antarctic; Australia; the Andes; the San Andreas fault system; and Kume Island, Japan.
Highlights are provided below. GEOLOGY articles published ahead of print can be accessed online at http://geology.gsapubs.org/content/early/recent. All abstracts are open-access at http://geology.gsapubs.org/; representatives of the media may obtain complimentary GEOLOGY articles by contacting Kea Giles at the address above.
Please discuss articles of interest with the authors before publishing stories on their work, and please make reference to GEOLOGY in articles published. Contact Kea Giles for additional information or assistance.
Non-media requests for articles may be directed to GSA Sales and Service, gsaservice@geosociety.org.
Abrupt weakening of the summer monsoon in northwest India ~4100 yr ago
Yama Dixit et al., Godwin Laboratory for Palaeoclimate Research, Department of Earth Sciences, University of Cambridge, Cambridge CB2 3EQ, UK. First published online on 24 Feb. 2014; http://dx.doi.org/10.1130/G35236.1.
In light of contemporary concerns for the future impact of climate change on humankind, the role of climate change in the collapse of ancient civilizations has become a topic of popular interest. One such time of widespread cultural transformation occurred about 4,000 years ago (4 ka), which marked the end of several early Bronze Age civilizations (Old Kingdom in Egypt, Akkadian Empire in Mesoptamia, Indus Civilization of India). One hypothesis to explain these cultural discontinuities is a "4.2 k.y. BP aridification event" [k.y. = thousand years; BP = before present]. Although a link between climate and the decline of Indus urbanism has been suggested by some and refuted by others, the issue remains unresolved mainly because of a lack of paleoclimate data from the actual region occupied by the Indus Civilization. We report a paleoclimatic record from Haryana, India, for an abrupt climate change at ~4.1 k.y. B.P. These data provide the first paleoclimate evidence for a weakening of the monsoon and shift toward drier climate on the plains of northwest India, supporting a possible role of climate in the transformation of the Indus civilization from an urbanized to village-based rural society.
Environmental change across a terrestrial Cretaceous-Paleogene boundary section in eastern Montana, USA, constrained by carbonate clumped isotope paleothermometry
Thomas S. Tobin et al., Department of Earth and Space Sciences, University of Washington, Box 351310, 4000 15th Avenue NE, Seattle, Washington 98105, USA. First published online on 24 Feb. 2014; http://dx.doi.org/10.1130/G35262.1.
In this study, Thomas S. Tobin and colleagues uses fossil mussel shells to determine how temperatures changed immediately prior to the end-Cretaceous mass extinction 66 million years ago. The prevailing hypothesis is that this extinction, which killed the dinosaurs (except birds) and many other widespread biological groups, was caused by a large asteroid impact. However, some scientists believe that the asteroid impact was not the sole reason many animals went extinct. Instead, these scientists think the severity of the extinction event may have been compounded by prior climate changes. Tobin and colleagues built a climate record for the end of the Cretaceous using a recently developed geochemical technique that allows us to determine the temperature in ancient terrestrial environments. They discovered that there appears to have been a temperature decline (~8 degrees Celsius or 14 degrees Fahrenheit) in summer temperatures beginning about 300,000 years before the end of the Cretaceous period. The temperature drop is contemporaneous with, and may be the cause of, declining measures of animal biodiversity over the same interval. Our data is consistent with the hypothesis that ecosystems were stressed by a changing climate, which may have contributed to the mass extinction event, and made the effects of the asteroid impact more severe.
Pleistocene drainage reorganization driven by the isostatic response to deep incision into the northeastern Tibetan Plateau
Huiping Zhang et al., Current address: U.S. Geological Survey, Reston, Virginia 20192, USA. First published online on 24 Feb. 2014; http://dx.doi.org/10.1130/G35115.1.
During Pleistocene time, the Yellow River progressive excavated previously connected Tertiary-Quaternary sedimentary basins in the northeastern Tibetan Plateau. Basin top fill surfaces within basins along the Yellow River provide reliable markers to quantify the erosional unloading. The isostatic response to this incision may have led to a tilting of the landscape and drainage reorganization that includes a reversal of drainage.
Channel enlargement by avulsion-induced sediment starvation in the Saskatchewan River
Norman D. Smith et al., Department of Earth & Atmospheric Sciences, University of Nebraska, Lincoln, Nebraska 68588-0340, USA. First published online on 24 Feb. 2014; http://dx.doi.org/10.1130/G35258.1.
River channels downstream of large dams commonly become larger after the dam is constructed. This happens because entrapment of river-borne sediment in the upstream reservoir causes outflowing water to become sediment-deficient and ultimately more erosive, resulting in widening, deepening, and sometimes coarsening of the channel bed. In a study of the Saskatchewan River in south-central Canada, Norman D. Smith and colleagues discovered that the process of avulsion (i.e., the natural diversion of flow from an established river channel to a new location in the floodplain) creates effects similar to dams by depositing the diverted river sediment on the floodplain surface, thereby creating erosive, sediment-deficient flows in downstream channels. Results of three surveys (1911, 1954-1956, 2011-2012) conducted on a 130-km channel segment downstream of avulsion deposits initiated in the 1870s show that enlargement has occurred in the upper 95 km, including a greater than 50% increase in average channel size in the upper 35 km. Because avulsions are basic features of aggrading river systems, this outcome bears on assessments of channel size, flood frequency, bank stability, and sediment budgets in both modern and ancient floodplains. Erosion by sediment-deficient flows exiting areas of avulsive deposition may be an important but unrecognized process in floodplain evolution.
Earthquakes and fault zone structure
Luisa Valoroso et al., Istituto Nazionale di Geofisica e Vulcanologia, Via di Vigna Murata 605, 00143 Rome, Italy. First published online on 24 Feb. 2014; http://dx.doi.org/10.1130/G35071.1.
Earthquakes are one of the most damaging manifestations of the tectonic plate motions that deform the Earth's crust. In order to mitigate the risk to human populations and cultures, it is important to characterize the fault zone structure and related properties (such as permeability, anisotropy, fluid content, and lithology) which are essential for understanding earthquake mechanics and earthquake rupture nucleation, propagation and arrest. Most of our knowledge about fault structure derives from field studies of ancient faults. Here, by using precise aftershocks locations of the 2009 Mw 6.1 L'Aquila (Italy) earthquake, Luisa Valoroso and colleagues reconstruct the complex structure of a normal fault at a resolution directly comparable with field geological investigations and investigate the mechanisms that generate damage around faults. They observe minor antithetic and synthetic fault segments in both the hanging wall and footwall blocks; fault bendings; dilational jogs; and parallel slipping planes at the base of the seismogenic volume. The fault zone thickness varies along strike from 0.3 to 1.5 km at the fault terminations with an increase in geometrical complexity. The strong similarities between seismological and geological images of fault structure indicate that earthquakes have a key role in the evolution of fault architecture.
Rapid soil accumulation in a frozen landscape
Martin Schiller et al., Centre for Star and Planet Formation, Natural History Museum of Denmark, University of Copenhagen, Øster Voldgade 5-7, 1350 Copenhagen, Denmark. First published online on 24 Feb. 2014; http://dx.doi.org/10.1130/G35450.1.
Much of what we know about Mars comes from understanding processes in the upper reaches of the Antarctic Dry Valleys. Until now, large polygon structures covering the surface of central Beacon Valley, which are also present on Mars, have been thought to be frozen in time for millions of years. However, new data presented in this article by Martin Schiller and colleagues, provide evidence for soil accumulation within thousands of years within a single polygon structure potentially indicating that these surfaces are much more active than previously thought. This is a tantalizing find because it suggests that the apparent stable surfaces of cold desert environments such as that of Beacon Valley and Mars might be much more active than it appears at first glance.
Oxic facies and the Late Devonian mass extinction, Canning Basin, Australia
Annette D. George et al., School of Earth & Environment, University of Western Australia, Crawley, WA 6009, Australia. First published online on 24 Feb. 2014; http://dx.doi.org/10.1130/G35249.1.
The Late Devonian mass extinction is widely regarded as one of the "Big Five" biotic crises in the last 550 million years of Earth's history, yet the causal mechanisms remain arguably the most difficult to decipher. This paper presents results from the Canning Basin of northwestern Australia, where it has been known for many years that the well-preserved Late Devonian reef complexes record global changes in reef-building organisms through two major extinction events. Annette D. George and colleagues examined the sedimentary record in a drillcore and obtained geochemical data on organic content, carbon isotopic ratios, and inorganic elemental ratios. Their data do not support anoxic conditions as a major factor in causing extinctions in this region in contrast to many other Late Devonian localities worldwide. Instead, they interpret the effects of relative sea-level changes and sediment influx from the adjacent Kimberley landmass as significant regional controls causing stress-inducing environmental changes such as fluctuations in light, salinity, and nutrient composition and abundance.
Late Holocene fluctuations of Qori Kalis outlet glacier, Quelccaya Ice Cap, Peruvian Andes
Justin S. Stroup et al., Department of Earth Sciences, HB 6105 Fairchild Hall, Dartmouth College, Hanover, New Hampshire 03755, USA. First published online on 25 Feb. 2014; http://dx.doi.org/10.1130/G35245.1.
Understanding the causes of tropical glacial fluctuations is important for predicting the response of these glaciers to future climate change. Records of glacial fluctuations also provide insight about past climate. This study by Justin S. Stroup and colleagues provides the first comparison of the past extents of Quelccaya Ice Cap, the largest tropical ice mass, with the annually dated Quelccaya ice core records of accumulation and temperature (Thompson et al., 2013) and shows that temperature was the driving force of glacial expansion and retreat during the last millennium. Furthermore, the past fluctuations of other glaciers in tropical South America are similar to Quelccaya, indicating a regionally consistent pattern of past climate conditions. When compared with glacial fluctuations at higher latitudes, the results suggest that glaciers were larger than present and depositing moraines in both northern and southern hemispheres at about the same time, indicating that climate mechanisms which caused late Holocene cooling likely influenced a globally synchronous pattern of cooling.
Localized shear in the deep lithosphere beneath the San Andreas fault system
Heather A. Ford et al., Current address: Department of Geology and Geophysics, Yale University, PO Box 208109, New Haven, Connecticut 06520-8109, USA. First published online on 25 Feb. 2014; http://dx.doi.org/10.1130/G35128.1.
The San Andreas fault system accommodates a significant portion (~75%) of relative motion between the Pacific and North American plates. At the surface, deformation is accommodated by transform motion along the strike-slip faults within the fault system. In contrast, the distribution of deformation at lithospheric mantle depths is debated. In this study, Heather A. Ford and colleagues utilize scattered seismic waves to image contrasts in lithospheric mantle properties across the central segment of the San Andreas fault and at the Calaveras-Green Valley-Bartlett Springs faults (part of the San Andreas fault system) to the north. The correlation between the surface expressions of the faults, and the change in lithospheric mantle properties at depth, points to deformation on a narrow shear zone less than 50 km in width. This result supports the view that the mantle lithosphere behaves in a "plate-like" manner.
Apatites in lunar KREEP basalts: The missing link to understanding the H isotope systematics of the Moon
Romain Tartèse et al., Planetary and Space Sciences, The Open University, Walton Hall, Milton Keynes MK7 6AA, UK. First published online on 25 Feb. 2014; http://dx.doi.org/10.1130/G35288.1.
Recent re-investigations of samples from the Moon using modern analytical techniques have been able to eventually measure indigenous lunar water, challenging the long-standing paradigm of a dry Moon. Mare basalts erupted more than three billion years ago indirectly sample the lunar mantle, and provide us with the opportunity to re-assess its volatile inventory. However, most basaltic magmas were affected by petrogenetic processes such as crystallization and degassing that modified the primary characteristics of indigenous lunar water. In this study, we have analyzed the water content and its isotopic composition in the volatile-bearing mineral apatite in some phosphorus-rich KREEP basalts. Because this type of basalt contains elevated contents of incompatible elements such as P, apatite likely crystallized earlier than in other types of lunar basalts. As a result, these apatites likely preserved information regarding the volatile inventory of lunar magmas before substantial late-stage modifications occurred. Overall, the data obtained on apatites in these KREEP basalts suggest that the H isotopic composition of the water they contain was similar to that of the Earth's interior. These findings may imply that significant amounts of water present in the Moon were inherited from the proto-Earth, surviving the purported Moon-forming impact event.
Evidence for a Noachian-aged ephemeral lake in Gusev crater, Mars
Steven W. Ruff et al., School of Earth and Space Exploration, Arizona State University, Tempe, Arizona 85287, USA. First published online on 25 Feb. 2014; http://dx.doi.org/10.1130/G35508.1.
The Mars Exploration Rover Spirit was remarkably successful in its exploration of Gusev crater, but seemed to have failed in its efforts to locate evidence of the ancient lake that drew it there. Notable discoveries were made related to the role of water, including identification of carbonate-rich outcrops dubbed Comanche. Originally, the carbonate was thought to be a product of volcanic hydrothermal activity. But scientists now recognize abundant evidence that the carbonate is more likely due to evaporative precipitation from an ephemeral lake early in the history of Gusev crater. Floodwaters entering the crater through the huge Ma'adim Vallis inlet channel, perhaps repeatedly, appear to have ponded with sufficient duration to alter the existing rocks and leave behind a residue of carbonates. This scenario adds significance to Gusev crater as a candidate landing site for future missions oriented toward the search for past life on Mars.
Lead concentration and isotopic composition in the Pacific sclerosponge (Acanthochaetetes wellsi) reflects environmental lead pollution
Kazuto Ohmori et al., Department of Natural History Sciences, Faculty of Science, Hokkaido University, Sapporo, Hokkaido 060-0810, Japan. First published online on 25 Feb. 2014; http://dx.doi.org/10.1130/G34316.1.
Sclerosponges (coralline sponge) are possible powerful recorders of lead (Pb) change in ocean surface, because their skeletons contain 10 times higher Pb concentration than that of another carbonate proxy. In addition, sclerosponge skeletons grow slowly (0.01-1.34 mm/year), long living, up to several hundreds of years, can be found throughout geological time scale. In this study, Kazuto Ohmori and colleagues measured Pb concentration and isotopes in high-Mg calcite skeleton of the sclerosponge (Acanthochaetetes wellsi) collected from Kume Island, Japan, East China Sea, to assess the usefulness as a proxy for lead pollution history. Results show that the Pb/Ca time series recorded from 1967 through 2007 CE correspond to historical changes in atmospheric lead flux in anthropogenic aerosols. Pb isotopes in the sclerosponge skeleton document that the main source of lead emissions shifted from Japan (1970–1980 CE) to China (1995–2005 CE), as expected from the timing of legislation
against the use of leaded gasoline in Japan and China. These results indicate that the skeleton of the Pacific sclerosponge is a powerful proxy to monitor environmental lead pollution. Applying this methodology to long-living and/or fossil specimens could be useful in determining the interannual variability of atmospheric transport and dynamics over geologic time scales.
INFORMATION:
http://www.geosociety.org
Geology covers Mars, the Moon, anthropogenic lead poisoning, earthquake hazards, and more
New Geology articles first published online Feb. 24-25, 2014
2014-02-25
ELSE PRESS RELEASES FROM THIS DATE:
Scientists twist sound with metamaterials
2014-02-25
WASHINGTON D.C. Feb. 25, 2014 -- A Chinese-U.S. research team is exploring the use of metamaterials -- artificial materials engineered to have exotic properties not found in nature -- to create devices that manipulate sound in versatile and unprecedented ways.
In the journal Applied Physics Letters, the team reports a simple design for a device, called an acoustic field rotator, which can twist wavefronts inside it so that they appear to be propagating from another direction.
"Numerous research efforts have centered on metamaterial-based devices with fascinating wave-control ...
Improvement in polymers for aviation
2014-02-25
We live surrounded by polymers and today, rather than come up with new polymers, there is a tendency to modify them in order to obtain new applications. Carbon nanotubes have excellent mechanical properties, are very tough, very rigid, and what is more, they conduct electricity. "The problem with them is that they get dispersed, in other words, it's very difficult to get them to blend with polymers," explained Iñaki Eguiazabal, a member of the Polymer Technology Group. That is why it is essential to come up with methods that will enablethe carbon nanotubes to have a ...
'Greener' aerogel technology holds potential for oil and chemical clean-up
2014-02-25
MADISON, Wis. – Cleaning up oil spills and metal contaminates in a low-impact, sustainable and inexpensive manner remains a challenge for companies and governments globally.
But a group of researchers at the University of Wisconsin–Madison is examining alternative materials that can be modified to absorb oil and chemicals without absorbing water. If further developed, the technology may offer a cheaper and "greener" method to absorb oil and heavy metals from water and other surfaces.
Shaoqin "Sarah" Gong, a researcher at the Wisconsin Institute for Discovery (WID) ...
Glycerol phenylbutyrate reduces hepatic encephalopathy events
2014-02-25
Phase 2 trial results published in the March issue of Hepatology, a journal of the American Association for the Study of Liver Diseases, suggests the potential for Glycerol Phenylbutyrate (GPB) to reduce hepatic encephalopathy episodes in patients with cirrhosis, with a safety profile similar to placebo.
Patients with hepatic encephalopathy experience neuropsychiatric symptoms that may range from mild confusion to coma. There is conflicting evidence on the link between elevated blood ammonia and hepatic encephalopathy. Poorly-absorbable disaccharides and antibiotics ...
Sensor-based irrigation systems show potential to increase greenhouse profitability
2014-02-25
COLLEGE PARK, MD--Wireless sensor-based irrigation systems can offer significant benefits to greenhouse operators. Advances in sensor technology and increased understanding of plant physiology have made it possible for greenhouse growers to use water content sensors to accurately determine irrigation timing and application rates in soilless substrates. The wireless sensor systems provide more accurate measurements of substrate moisture than qualitative methods, and can save irrigation water, labor, energy, and fertilizer. The authors of a report published in HortTechnology ...
Technique to create holes in graphene could improve water filters, desalination
2014-02-25
Researchers have devised a way of making tiny holes of controllable size in sheets of graphene, a development that could lead to ultrathin filters for improved desalination or water purification.
The team of researchers at MIT, Oak Ridge National Laboratory, and in Saudi Arabia succeeded in creating subnanoscale pores in a sheet of the one-atom-thick material, which is one of the strongest materials known. Their findings are published in the journal Nano Letters.
The concept of using graphene, perforated by nanoscale pores, as a filter in desalination has been proposed ...
Report details multiple commercial uses of wireless sensor networks
2014-02-25
ATHENS, GA--Managing the quality and quantity of freshwater resources is one of the most serious environmental challenges of the 21st century. Global population growth and increasing urbanization have resulted in increased competition for water resources among domestic, industrial, and agricultural users. Challenged to find ways to manage irrigation needs while recognizing the limitations of freshwater resources, many commercial horticulture operations are showing increased interest in the use of wireless sensor networks (WSN)--technology designed to both monitor and control ...
Analysis: 32 years of US filicide arrests
2014-02-25
PROVIDENCE, R.I. [Brown University] — Instances in which parents kill their children may seem so horrifying and tragic that they defy explanation. Published scientific and medical research, meanwhile, doesn't offer much epidemiological context to help people understand patterns among such heinous crimes. A paper in the March edition of the journal Forensic Science International provides the first comprehensive statistical analysis of filicide in the United States, drawing on 32 years of data on more than 94,000 arrests. The study also explores possible underlying psychiatric ...
CWRU researchers find byproducts of bacteria-causing gum disease incite oral cancer growth
2014-02-25
Researchers from Case Western Reserve University have discovered how byproducts in the form of small fatty acids from two bacteria prevalent in gum disease incite the growth of deadly Kaposi's sarcoma-related (KS) lesions and tumors in the mouth.
The discovery could lead to early saliva testing for the bacteria, which, if found, could be treated and monitored for signs of cancer and before it develops into a malignancy, researchers say.
"These new findings provide one of the first looks at how the periodontal bacteria create a unique microenvironment in the oral cavity ...
Eliminating maternal mortality could extend life expectancy in reproductive ages
2014-02-25
Maternal death rates represent the single largest health discrepancy between developed and developing populations, with nearly all - over 99% -- maternal deaths worldwide occurring in developing countries and over half of them in sub-Saharan Africa countries. Eliminating maternal mortality, which is defined as the deaths related to pregnancy, would result in a gain of over a half year (0.6 years) in life expectancy worldwide, according to a new study by researchers at Johns Hopkins Bloomberg School of Public Health. The study is published February 13 in PLOS ONE.
Over ...
LAST 30 PRESS RELEASES:
HKU ecologists reveal key genetic insights for the conservation of iconic cockatoo species
New perspective highlights urgent need for US physician strike regulations
An eye-opening year of extreme weather and climate
Scientists engineer substrates hostile to bacteria but friendly to cells
New tablet shows promise for the control and elimination of intestinal worms
Project to redesign clinical trials for neurologic conditions for underserved populations funded with $2.9M grant to UTHealth Houston
Depression – discovering faster which treatment will work best for which individual
Breakthrough study reveals unexpected cause of winter ozone pollution
nTIDE January 2025 Jobs Report: Encouraging signs in disability employment: A slow but positive trajectory
Generative AI: Uncovering its environmental and social costs
Lower access to air conditioning may increase need for emergency care for wildfire smoke exposure
Dangerous bacterial biofilms have a natural enemy
Food study launched examining bone health of women 60 years and older
CDC awards $1.25M to engineers retooling mine production and safety
Using AI to uncover hospital patients’ long COVID care needs
$1.9M NIH grant will allow researchers to explore how copper kills bacteria
New fossil discovery sheds light on the early evolution of animal nervous systems
A battle of rafts: How molecular dynamics in CAR T cells explain their cancer-killing behavior
Study shows how plant roots access deeper soils in search of water
Study reveals cost differences between Medicare Advantage and traditional Medicare patients in cancer drugs
‘What is that?’ UCalgary scientists explain white patch that appears near northern lights
How many children use Tik Tok against the rules? Most, study finds
Scientists find out why aphasia patients lose the ability to talk about the past and future
Tickling the nerves: Why crime content is popular
Intelligent fight: AI enhances cervical cancer detection
Breakthrough study reveals the secrets behind cordierite’s anomalous thermal expansion
Patient-reported influence of sociopolitical issues on post-Dobbs vasectomy decisions
Radon exposure and gestational diabetes
EMBARGOED UNTIL 1600 GMT, FRIDAY 10 JANUARY 2025: Northumbria space physicist honoured by Royal Astronomical Society
Medicare rules may reduce prescription steering
[Press-News.org] Geology covers Mars, the Moon, anthropogenic lead poisoning, earthquake hazards, and moreNew Geology articles first published online Feb. 24-25, 2014