(Press-News.org) It's a jungle in there. In the tightly woven ecosystem of the human gut, trillions of bacteria compete with each other on a daily basis while they sense and react to signals from the immune system, ingested food, and other bacteria.
Problems arise when bad gut bugs overtake friendly ones, or when the immune system is thrown off balance, as in Crohn's disease, celiac disease, and colorectal cancer. Doctors have struggled to diagnose these conditions early and accurately. But now a new engineered strain of E. coli bacteria could deliver status updates from this complex landscape to help keep gastrointestinal diseases at bay.
The new strain non-destructively detected and recorded an environmental signal in the mouse gut, and remembered what it "saw." The advance, reported in the Proceedings of the National Academy of Sciences, could lead to a radically new screening tool for human gut health.
The key to turning E. coli into gut reporters was to insert a well-known genetic switch that flips when it senses a specific environmental cue. This switch confers on the cells the ability to "remember" what they sense for up to a week – long enough for scientists to recover fecal samples and test whether the switch has flipped.
"This achievement paves the way toward living monitors programmed using synthetic gene circuits," said Wyss Institute Core Faculty member Pamela Silver, Ph.D., senior author on the study who is also the Elliott T. and Onie H. Adams Professor of Biochemistry and Systems Biology at Harvard Medical School (HMS). Silver's team included James Collins, Ph.D., who is also a Wyss Core Faculty member and professor of bioengineering at Boston University, as well as other collaborators from the Wyss Institute, Harvard Medical School and Boston University. "It could lead to new diagnostics for all sorts of complex environments."
The approach Silver's team took runs counter to the prevailing dogma in synthetic biology, which is to design genetic systems that drive cell behavior from scratch, said Wyss Institute Senior Staff Scientist Jeff Way, Ph.D., a coauthor on the paper. On the other hand, "Nature has a tried-and-true blueprint for memory systems if you know where to look," Way said. "Why not just accept Nature as it is, and develop the system from there?"
The genetic switch the team inserted in E. coli came from lambda phage, a virus that commonly attacks this bacterium.
After invading E. coli, lambda typically lays low, living in a stealth mode called lysogeny in which its DNA simply hangs out in the E. coli's genome. But when the bacterium's DNA is damaged – and only then – the switch flips, instructing the virus to enter a mode called lysis in which it multiplies inside the cell and breaks through its membrane in a kind of microbial explosion.
"This is a very stable system in Nature," said lead author Jonathan Kotula, Ph.D., a Postdoctoral Fellow at HMS who is also affiliated with the Wyss Institute. "We knew the lambda switch would be a great candidate for the memory element, and we simply tweaked it to meet our needs."
The cells with the engineered lambda switch would not become lytic under any conditions. Kotula and the rest of Silver's team used standard molecular genetic tools to rig the switch such that it turned on only in the presence of an inactive form of the antibiotic tetracycline.
In laboratory experiments, the switch turned on within a few hours of exposure to the antibiotic– and stayed in this 'ON' state inside E. coli for a week or more, even as the bacteria grew and divided. In short, the cells "remembered" that they had seen that molecule in the gut.
"It was truly shocking how cleanly the experiments worked," said Jordan Kerns, Ph.D., a Wyss Institute Postdoctoral Fellow.
But to function as a living diagnostic, the engineered E. coli also had to survive their trip through the gut intact, which meant they had to compete effectively against rival gut microbes.
The engineered strain worked fine in laboratory experiments, but gradually disappeared when the team introduced it into the gut of the mouse itself. It turned out that it had been outcompeted by the animal's native gut bacteria. The team did not fret in the face of this result because they knew that the classical strain of E. coli they used had lived only in the laboratory since the 1940s – losing its ability to compete in the real world, particularly in an environment as challenging as the mammalian gut.
They tackled the problem by isolating a native strain of E. coli from the mouse gut, then engineering its genome to incorporate the switch. The switch in the cells flipped within hours, as it had before, and the cells "remembered" for about a week that they had seen the antibiotic in the gut, Kotula said. Moreover, the population stabilized within the gut, holding its own in the presence of other bacteria.
The team envisions a day when a doctor would give a patient a strain of engineered bacteria as a diagnostic, much as they give a probiotic today. The strain would be rigged to monitor the gut for any number of conditions from inflammation to disease markers. At a follow-up visit, the patient would submit a stool sample, and medical technicians would collect E. coli from the sample and analyze it. Only if the switch (or switches) were on would the doctor perform more invasive tests such as an endoscopy or a colonoscopy.
For now the team is focusing on genetically tweaking the memory element of their system so that the cells remember for even longer periods of time, and engineering it so the switch flips when it senses other chemical signatures as well, such as those of cancer or parasites. In the longer term, their engineered bacteria could sense a disease state and work with other engineered genetic circuits that can produce a specific drug on command, thus producing a dynamic therapy.
"Our increasing appreciation of the role of the microbiome in health and disease is transforming the entire medical field. The concept of using the power of synthetic biology to harness microbes that live in our gut to develop living diagnostic and therapeutic devices is a harbinger of things to come, and Pam's work provides the first proof-of-principle that this is a viable and exciting path to pursue," said Wyss Institute Founding Director Don Ingber, Ph.D., M.D.
INFORMATION:
This work was funded by the Defense Advanced Research Projects Agency (DARPA) and the Wyss Institute.
IMAGES AVAILABLE
About the Wyss Institute for Biologically Inspired Engineering at Harvard University
The Wyss Institute for Biologically Inspired Engineering at Harvard University uses Nature's design principles to develop bioinspired materials and devices that will transform medicine and create a more sustainable world. Working as an alliance among all of Harvard's Schools, and in partnership with Beth Israel Deaconess Medical Center, Brigham and Women's Hospital, Boston Children's Hospital, Dana Farber Cancer Institute, Massachusetts General Hospital, the University of Massachusetts Medical School, Spaulding Rehabilitation Hospital, Boston University, Tufts University, and Charité - Universitätsmedizin Berlin, the Institute crosses disciplinary and institutional barriers to engage in high-risk research that leads to transformative technological breakthroughs. By emulating Nature's principles for self-organizing and self-regulating, Wyss researchers are developing innovative new engineering solutions for healthcare, energy, architecture, robotics, and manufacturing. These technologies are translated into commercial products and therapies through collaborations with clinical investigators, corporate alliances, and new start-ups.
About Harvard Medical School
Harvard Medical School has more than 7,500 full-time faculty working in 11 academic departments located at the School's Boston campus or in one of 47 hospital-based clinical departments at 16 Harvard-affiliated teaching hospitals and research institutes. Those affiliates include Beth Israel Deaconess Medical Center, Brigham and Women's Hospital, Cambridge Health Alliance, Boston Children's Hospital, Dana-Farber Cancer Institute, Harvard Pilgrim Health Care, Hebrew SeniorLife, Joslin Diabetes Center, Judge Baker Children's Center, Massachusetts Eye and Ear Infirmary, Massachusetts.
Bacterial reporters that get the scoop
Engineered bacteria sense, remember, and report on their experience in the gut -- paving the way to living diagnostics and therapeutics
2014-03-17
ELSE PRESS RELEASES FROM THIS DATE:
NIH scientists track evolution of a superbug
2014-03-17
Using genome sequencing, National Institutes of Health (NIH) scientists and their colleagues have tracked the evolution of the antibiotic-resistant bacterium Klebsiella pneumoniae sequence type 258 (ST258), an important agent of hospital-acquired infections. While researchers had previously thought that ST258 K. pneumoniae strains spread from a single ancestor, the NIH team showed that the strains arose from at least two different lineages. The investigators also found that the key difference between the two groups lies in the genes involved in production of the bacterium's ...
Stanford makes flexible carbon nanotube circuits more reliable and power efficient
2014-03-17
Engineers would love to create flexible electronic devices, such as e-readers that could be folded to fit into a pocket. One approach they are trying involves designing circuits based on electronic fibers, known as carbon nanotubes (CNTs), instead of rigid silicon chips.
But reliability is essential. Most silicon chips are based on a type of circuit design that allows them to function flawlessly even when the device experiences power fluctuations. However, it is much more challenging to do so with CNT circuits.
Now a team at Stanford has developed a process to create ...
Document addresses improving quality, safety for PCIs performed without on-site backup
2014-03-17
WASHINGTON, DC, and DALLAS (March 17, 2014) – The increasing number of percutaneous coronary interventions (PCIs) being performed at low-volume centers without on-site cardiac surgery backup has driven the need for new safety and quality protocols, according to an expert consensus document released today and written by a committee representing the Society for Cardiovascular Angiography and Interventions (SCAI), the American College of Cardiology Foundation (ACCF) and the American Heart Association (AHA). The document outlines steps hospitals can take to provide the safest ...
Antarctic moss lives after 1,500+ years under ice
2014-03-17
Researchers from the British Antarctic Survey and University of Reading report in the Cell Press journal Current Biology on March 17 that Antarctic mosses can essentially come back to life after 1,500 completely inactive years under the ice.
Prior to this finding, direct regeneration from frozen plant material had been demonstrated after 20 years at most. Beyond that, only microbes had been shown to be capable of revival after so many years on hold.
"These mosses were basically in a very long-term deep freeze," says Peter Convey of the British Antarctic Survey. "This ...
Overpopulation: The transparent elephant in the room causing crucial modern crises
2014-03-17
A review of nearly 200 research articles (~75% published in the last ten years) shows how the issue of population growth is being downplayed and trivialized despite its fundamental role on modern crises related to unemployment, public debt, welfare (e.g., reduced access to food and water or even health and education), extinction of species and climate change. The study suggests that no foreseeable pathways, to fix or ameliorate such crises, are likely without seriously dealing with natality rates by both developed and developing nations.
The paper is written by Camilo ...
Younger men receive faster care for heart attacks, angina compared with women of same age
2014-03-17
A new study indicates that in younger adults experiencing heart attacks and angina, men are more likely to receive faster care compared with women. The study, published in CMAJ (Canadian Medical Association Journal) also found that gender-related factors affected access to care for both men and women.
To understand why sex differences in mortality exist in younger men and women with acute coronary syndrome, researchers included 1123 patients aged 18 to 55 years recruited from 24 centres across Canada, 1 in the United States and 1 in Switzerland. Of the participants, ...
Back to life after 1,500 years
2014-03-17
Researchers from the British Antarctic Survey and Reading University have demonstrated that, after over 1,500 years frozen in Antarctic ice, moss can come back to life and continue to grow. For the first time, this vital part of the ecosystem in both polar regions has been shown to have the ability to survive century to millennial scale ice ages. This provides exciting new insight into the survival of life on Earth.
The team, reporting in Current Biology this week, observed moss regeneration after at least 1,530 years frozen in permafrost. This is the first study to show ...
Fighting antibiotic resistance with 'molecular drill bits'
2014-03-17
DALLAS, March 17, 2014 — In response to drug-resistant "superbugs" that send millions of people to hospitals around the world, scientists are building tiny, "molecular drill bits" that kill bacteria by bursting through their protective cell walls. They presented some of the latest developments on these drill bits, better known to scientists as antimicrobial peptides (AMPs), at the 247th National Meeting & Exposition of the American Chemical Society (ACS), the world's largest scientific society.
The meeting, which features more than 10,000 scientific reports across disciplines ...
Shale could be long-term home for problematic nuclear waste
2014-03-17
DALLAS, March 17, 2014 — Shale, the source of the United States' current natural gas boom, could help solve another energy problem: what to do with radioactive waste from nuclear power plants. The unique properties of the sedimentary rock and related clay-rich rocks make it ideal for storing the potentially dangerous spent fuel for millennia, according to a geologist studying possible storage sites who made a presentation here today.
The talk was one of more than 10,000 presentations at the 247th National Meeting & Exposition of the American Chemical Society (ACS), the ...
How the science of deer hunting can help patients with diabetes
2014-03-17
DALLAS, March 17, 2014 — Body odor is a deer hunter's worst enemy, an alert to animals that an ominous presence is lurking, but the science behind suppressing it to give hunters an edge oddly enough could help researchers develop a life-saving device for diabetes patients. Scientists today presented the latest advances that tie together these two seemingly unrelated fronts at the 247th National Meeting & Exposition of the American Chemical Society (ACS), the world's largest scientific society.
The meeting, attended by thousands of scientists, features more than 10,000 ...
LAST 30 PRESS RELEASES:
Aston University microbiologist calls for public vigilance and urgent action on the danger of raw sewage in UK seas
Supercomputing illuminates detailed nuclear structure
Ohio tests new model for providing mental health resources to youth in rural communities
Breast-conserving surgery improves sexual well-being compared to breast reconstruction
What can theoretical physics teach us about knitting?
Discovery of rare gene variants provides window into tailored type 2 diabetes treatment
UMCG perfusion technique for donor livers gets worldwide followings
New method developed to dramatically enhance bioelectronic sensors
Researchers identify potential link between retinal changes, Alzheimer’s disease
Hidden allies
HKUST unveils critical nanoscale phenomena for more efficient and stable perovskite solar cells
MD Anderson Research Highlights for February 26, 2025
Social media posts about medical tests with potential for overdiagnosis
Consumer confidence in the responsible use of digital health data after the COVID-19 pandemic
Influencers promoting ‘overwhelmingly’ misleading information about medical tests on social media
Two papers by Walhout lab in Nature highlight novel metabolic principles
Multiplexing entanglement in a quantum network
Bacteria consumed by immune cells become part of the cell
CSIC researchers discover how the brain builds sophisticated maps to navigate and remember the world
New spatial mechanism for the coexistence of tree species
City of Hope research features myeloma study, cancer surgery and more
A*STAR spin-off NalaGenetics implements nationwide drug reaction screening for leprosy patients in Indonesia
Unraveling the brain’s hidden motor modules
New photon-avalanching nanoparticles could enable next-generation optical computers
Current status and future perspectives on early detection and diagnosis of colorectal cancer in China
Program’s expansion boosts student research opportunities
Deep learning in the diagnosis and prognosis of oral potentially malignant disorders
Some fuel lodges in the inner walls of fusion vessels. Researchers now have a better idea of how much.
Bismuth-based catalysts: Promising candidates for electrochemical CO2 reduction to formate
Novel molten metal catalysts for CO2-free hydrogen production
[Press-News.org] Bacterial reporters that get the scoopEngineered bacteria sense, remember, and report on their experience in the gut -- paving the way to living diagnostics and therapeutics