(Press-News.org) COLUMBUS, Ohio—For the first time, physicists have demonstrated that information can flow through a diamond wire.
In the experiment, electrons did not flow through diamond as they do in traditional electronics; rather, they stayed in place and passed along a magnetic effect called "spin" to each other down the wire—like a row of sports spectators doing "the wave."
Spin could one day be used to transmit data in computer circuits—and this new experiment, done at The Ohio State University, revealed that diamond transmits spin better than most metals in which researchers have previously observed the effect.
Researchers worldwide are working to develop so-called "spintronics," which could make computers simultaneously faster and more powerful.
Diamond has a lot going for it when it comes to spintronics, said lead investigator Chris Hammel, Ohio Eminent Scholar in Experimental Physics at Ohio State. It's hard, transparent, electrically insulating, impervious to environmental contamination, resistant to acids, and doesn't hold heat as semiconductors do.
"Basically, it's inert. You can't do anything to it. To a scientist, diamonds are kind of boring, unless you're getting engaged," Hammel said. "But it's interesting to think about how diamond would work in a computer."
The price tag for the diamond wire didn't reach engagement ring proportions, Hammel confirmed. It cost a mere $100, since it was made of synthetic, rather than natural, diamond.
The findings here represent the first very small step along a very long road that could one day lead to diamond transistors.
But beyond that, this discovery could change the way researchers study spin, Hammel said.
The finding appears in the March 23 issue of the journal Nature Nanotechnology.
Electrons attain different spin states according to the direction in which they're spinning—up or down. Hammel's team placed a tiny diamond wire in a magnetic resonance force microscope and detected that the spin states inside the wire varied according to a pattern.
"If this wire were part of a computer, it would transfer information. There's no question that you'd be able to tell at the far end of the wire what the spin state of the original particle was at the beginning," he said.
Normally, diamond couldn't carry spin at all, because its carbon atoms are locked together, with each electron firmly attached to a neighboring electron. The researchers had to seed the wire with nitrogen atoms in order for there to be unpaired electrons that could spin. The wire contained just one nitrogen atom for every three million diamond atoms, but that was enough to enable the wire to carry spin.
The experiment worked because the Ohio State physicists were able to observe electron spin on a smaller scale than ever before. They focused the magnetic field in their microscope on individual portions of the wire, and found that they could detect when spin passed through those portions.
The wire measured only four micrometers long and 200 nanometers wide. In order to see inside it, they set the magnetic coil in the microscope to switch on and off over tiny fractions of a second, generating pulses that created 15-nanometer (about 50-atoms) wide snapshots of electron behavior. They knew that spin was flowing through the diamond when a magnet on a delicate cantilever moved minute amounts as it was alternatively attracted or repelled by the atoms in the wire, depending on their spin states.
Even more surprising was that the spin states lasted twice as long near the end of the wire than in the middle. Based on ordinary experiments, the physicists would expect spin states to last for the same length of time, regardless of where the measurement was made. In this case, spin states inside the wire lasted for about 15 milliseconds, and near the end they lasted for 30 milliseconds.
Hammel's team suspects that they were able to witness this new effect in part because of how closely they were able to zoom in on the wire. As they focused their tiny window of observation on the tip of the wire, they witnessed spin flowing in the only direction it could flow: into the wire. When they panned along the wire to observe the middle, the "window" emptied of spin twice as fast, because the spin states could flow in both directions—into and out of the wire.
"It's a dramatically huge effect that we were not anticipating," Hammel said.
The discovery challenges the way researchers have studied spin for the last 70 years, Hammel explained.
"The fact that spins can move like this means that the conventional way that the world measures spin dynamics on the macroscopic level has to be reconsidered—it's actually not valid," he added.
Conventional experiments don't have the fine resolution to look inside objects as small as the wire used in this study, and so can only look at such objects as a whole. Under those circumstances, researchers can only detect the average spin state: how many electrons in the sample are pointing up, and how many are pointing down. Researchers wouldn't know the difference if a few electrons in one part of the sample flipped from down to up, and another part flipped from up to down, because the average number of spins would remain the same.
"It's not the average we want," Hammel said. "We want to know how much the spins vary, and what is the lifetime of any particular spin state."
It's the difference between knowing that an average of one quarter of all spectators in a stadium are standing at any one time, and knowing that individual people are standing and sitting in a pattern timed to form "the wave."
Nobody could see the spins in diamond before, but this experiment proved that diamond can transport spin in an organized way, preserving spin state—and, thus, preserving information.
The physicists had to chill the wire to 4.2 Kelvin (about -452 degrees Fahrenheit or -269 degrees Celsius) to slow down the spins and to quiet their sensitive detector enough to make these few spins detectable. Many advances would have to be made before the effect could be exploited at room temperature.
INFORMATION:
Coauthors on the paper included doctoral students Jeremy Cardellino, Nicolas Scozzaro, Andrew J. Berger, and Chi Zhang; former doctoral student Michael Herman (now at Johns Hopkins University); former postdoctoral researcher Kin Chung Fong (now at Caltech), Ciriyam Jayaprakash, professor of physics; and Denis V. Pelekhov, director of Ohio State's NanoSystems Laboratory. Hammel directs the university's University's Center for Emergent Materials, a Materials Research Science and Engineering Center funded by the National Science Foundation.
This work was funded by the Army Research Office, the National Science Foundation, the Center for Emergent Materials, and the NanoSystems Laboratory.
Contact: P. Chris Hammel, (614) 247-6928; Hammel.7@osu.edu
Written by Pam Frost Gorder, (614) 292-9475; Gorder.1@osu.edu
Could diamonds be a computer's best friend?
Landmark experiment reveals the precious gem's potential in computing
2014-03-23
ELSE PRESS RELEASES FROM THIS DATE:
Leukaemia caused by chromosome catastrophe
2014-03-23
Researchers have found that people born with a rare abnormality of their chromosomes have a 2,700-fold increased risk of a rare childhood leukaemia. In this abnormality, two specific chromosomes are fused together but become prone to catastrophic shattering.
Acute lymphoblastic leukaemia, or ALL, is the most common childhood cancer. Scientists previously found that a small subset of ALL patients have repeated sections of chromosome 21 in the genomes of their leukaemia cells. This form of ALL – iAMP21 ALL – requires more intensive treatment than many other types of ALL. ...
Drugs fail to reawaken dormant HIV infection
2014-03-23
Scientists at Johns Hopkins report that compounds they hoped would "wake up" dormant reservoirs of HIV inside immune system T cells — a strategy designed to reverse latency and make the cells vulnerable to destruction — have failed to do so in laboratory tests of such white blood cells taken directly from patients infected with HIV.
"Despite our high hopes, none of the compounds we tested in HIV-infected cells taken directly from patients activated the latent virus," says Robert F. Siliciano, M.D., Ph.D., a professor of medicine at the Johns Hopkins University School ...
MIT engineers design 'living materials'
2014-03-23
CAMBRIDGE, MA -- Inspired by natural materials such as bone — a matrix of minerals and other substances, including living cells — MIT engineers have coaxed bacterial cells to produce biofilms that can incorporate nonliving materials, such as gold nanoparticles and quantum dots.
These "living materials" combine the advantages of live cells, which respond to their environment, produce complex biological molecules, and span multiple length scales, with the benefits of nonliving materials, which add functions such as conducting electricity or emitting light.
The new materials ...
Off-rift volcanoes explained
2014-03-23
Potsdam: Rift valleys are large depressions formed by tectonic stretching forces. Volcanoes often occur in rift valleys, within the rift itself or on the rift flanks as e.g. in East Africa. The magma responsible for this volcanism is formed in the upper mantle and ponds at the boundary between crust and mantle. For many years, the question of why volcanoes develop outside the rift zone in an apparently unexpected location offset by tens of kilometers from the source of molten magma directly beneath the rift has remained unanswered. A team of scientists from the GFZ German ...
Southeast England most at risk of rising deaths due to climate change
2014-03-23
Warmer summers brought on by climate change will cause more deaths in London and southeast England than the rest of the country, scientists predict.
Researchers at Imperial College London looked at temperature records and mortality figures for 2001 to 2010 to find out which districts in England and Wales experience the biggest effects from warm temperatures.
In the most vulnerable districts, in London and the southeast, the odds of dying from cardiovascular or respiratory causes increased by over 10 per cent for every 1C rise in temperature. Districts in the far north ...
TGen-led study discovers genetic cause of rare type of ovarian cancer
2014-03-23
PHOENIX, Ariz. — March 23, 2014 — The cause of a rare type of ovarian cancer that most often strikes girls and young women has been uncovered by an international research team led by the Translational Genomics Research Institute (TGen), according to a study published online today by the renowned scientific journal, Nature Genetics.
By applying its groundbreaking work in genomics, TGen led a study that included Mayo Clinic, Johns Hopkins University, St. Joseph's Hospital and Medical Center; Evergreen Hematology and Oncology, Children's Hospital of Alabama, the Autonomous ...
Shifting evolution into reverse promises cheaper, greener way to make new drugs
2014-03-23
This alternative approach to creating artificial organic molecules, called bioretrosynthesis, was first proposed four years ago by Brian Bachmann, associate professor of chemistry at Vanderbilt University. Now Bachmann and a team of collaborators report that they have succeeded in using the method to produce the HIV drug didanosine.
The proof of concept experiment is described in a paper published online March 23 by the journal Nature Chemical Biology.
"These days synthetic chemists can make almost any molecule imaginable in an academic laboratory setting," said Bachmann. ...
HPV eradicated by AHCC supplement, preclinical study suggests
2014-03-23
(March 23, 2014, Beaverton, OR) Treating cervical cancer cells with AHCC led to the eradication of HPV, human papillomavirus, as well as a decrease in the rate of tumor growth in-vitro and in-vivo, in research presented at the Society of Gynecological Oncology 45th Annual Meeting on Women's Cancer in Tampa, Florida. The study was led by Dr. Judith A. Smith, Pharm.D., at the University of Texas Health Science Center (UTHealth) Medical School at Houston.
In the study cervical cancer cells were treated with AHCC and incubated for 72 hours with sampling every 24 hours. The ...
Marblehead Resident Sean Whalen Named chairman of JDRF's Boston Walk to Cure Diabetes
2014-03-23
JDRF is the leading global organization funding type 1 diabetes (T1D) research. Their annual Boston walk, planned for Saturday, September 27 is expected to raise more than $1.3M for T1D research.
Whalen became involved with JDRF three years ago after his then three-year-old son, Jesse, was diagnosed with type 1 diabetes. Seeing the daily challenges Jesse faces, Whalen formed the "Jesse James Gang" team to participate in the JDRF Walk to Cure Diabetes. Over the past three years, the Jesse James Gang has raised more than $20,000.
"The JDRF Boston Walk ...
Longwood, Florida Auto Insurance Agency Joins Local Chamber of Commerce In Central Florida
2014-03-23
Kimco Insurance, Inc. - Kim Williams Allstate Insurance Agency in Longwood, Florida announces their new relationship with the Seminole County Regional Chamber of Commerce in Central Florida.
Kimco Insurance, Inc. is a licensed Allstate insurance agency in Wekiva Springs located at 237 N. Hunt Club Boulevard, Suite 101, Longwood, Florida 32779. Kimco Insurance, Inc. recently joined the Seminole County Regional Chamber of Commerce to partner with area businesses and network within the community.
"Seminole County Florida is a great area for business growth. Our ...
LAST 30 PRESS RELEASES:
New perspective highlights urgent need for US physician strike regulations
An eye-opening year of extreme weather and climate
Scientists engineer substrates hostile to bacteria but friendly to cells
New tablet shows promise for the control and elimination of intestinal worms
Project to redesign clinical trials for neurologic conditions for underserved populations funded with $2.9M grant to UTHealth Houston
Depression – discovering faster which treatment will work best for which individual
Breakthrough study reveals unexpected cause of winter ozone pollution
nTIDE January 2025 Jobs Report: Encouraging signs in disability employment: A slow but positive trajectory
Generative AI: Uncovering its environmental and social costs
Lower access to air conditioning may increase need for emergency care for wildfire smoke exposure
Dangerous bacterial biofilms have a natural enemy
Food study launched examining bone health of women 60 years and older
CDC awards $1.25M to engineers retooling mine production and safety
Using AI to uncover hospital patients’ long COVID care needs
$1.9M NIH grant will allow researchers to explore how copper kills bacteria
New fossil discovery sheds light on the early evolution of animal nervous systems
A battle of rafts: How molecular dynamics in CAR T cells explain their cancer-killing behavior
Study shows how plant roots access deeper soils in search of water
Study reveals cost differences between Medicare Advantage and traditional Medicare patients in cancer drugs
‘What is that?’ UCalgary scientists explain white patch that appears near northern lights
How many children use Tik Tok against the rules? Most, study finds
Scientists find out why aphasia patients lose the ability to talk about the past and future
Tickling the nerves: Why crime content is popular
Intelligent fight: AI enhances cervical cancer detection
Breakthrough study reveals the secrets behind cordierite’s anomalous thermal expansion
Patient-reported influence of sociopolitical issues on post-Dobbs vasectomy decisions
Radon exposure and gestational diabetes
EMBARGOED UNTIL 1600 GMT, FRIDAY 10 JANUARY 2025: Northumbria space physicist honoured by Royal Astronomical Society
Medicare rules may reduce prescription steering
Red light linked to lowered risk of blood clots
[Press-News.org] Could diamonds be a computer's best friend?Landmark experiment reveals the precious gem's potential in computing