(Press-News.org) Scientists of the German Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research (AWI), have deciphered a supposed climate paradox from the Miocene era by means of complex model simulations. When the Antarctic ice sheet grew to its present-day size around 14 million years ago, it did not get colder everywhere on the Earth, but there were regions that became warmer. A physical contradiction? No, as AWI experts now found out, the expansion of the ice sheet on the Antarctic continent triggered changes in winds, ocean currents and sea ice in the Southern Ocean that in the end led to the apparently contrary developments. The scientists report this in a new study published online in the journal Nature Geoscience.
From a geological perspective, the ice sheet of Antarctica is still relatively young. As climate researchers know from sediment samples and calcareous Foraminifera shells, the ice sheet grew to its present-day size around 14 million years ago. At the same time the surface temperature of the Southern Ocean rose by up to three degrees Celsius back then – a seemingly contradictory development, for which climate scientists had no logical explanation for a long time.
"If you imagine that the Antarctic ice sheet grew to its present size in a period of 100,000 years, it seems reasonable to suppose that self-reinforcing climate processes set in during this growth period and further boosted the cooling effect. One could assume, for instance, that the expanding ice sheet reflected more and more solar energy into space, as a result of which the air over the continent became colder and strong offshore winds swept over the ocean, cooled the water and created a huge amount of sea ice. Our climate data, however, paint a different picture," says AWI climate researcher Dr. Gregor Knorr.
He and his AWI colleague Prof. Dr. Gerrit Lohmann succeeded in depicting the climate conditions at that time in a coupled atmosphere-ocean model and in this way examined what changes the formation of the Antarctic ice sheet triggered in the climate system.
"Our simulation results show that the air temperature over the continent actually decreased by up to 22 degrees Celsius when the ice sheet grew, which led to cooling in some regions of the Southern Ocean. At the same time, however, the surface temperature in the Weddell Sea rose by up to six degrees Celsius," says Gregor Knorr.
The AWI climate scientists looked for the causes of these contrary changes in their model experiments and found them in the wind. "The expansion of the Antarctic ice sheet led to changes in the wind patterns over the Weddell Sea, for example. As a consequence, there was a shift in the flow of warm water towards the pole and the sea ice in this marine region declined," explains the AWI climate modeller.
These changes on the surface of the ocean brought about further changes in deep water, which in turn boosted the temperature rise in the surface water in a way unknown to the researchers up to now.
"Our model calculations helped us to develop a new understanding of the Earth system processes back then. Today we can explain what influence the formation of the Antarctic ice sheet had on temperature curves in the Southern Ocean of that time and how the recorded climate changes came about in marine sediment cores," says Gregor Knorr.
At the same time a great challenge arises for climate scientists as a consequence of these new insights. "On the one hand, our results show that we can understand climate processes by means of models to interpret data from climate history. On the other hand, the results also confirm that feedback mechanisms between individual climate factors are substantially more complex than we had previously assumed," says Gerrit Lohmann.
Can these new model calculations and insights be used for forecasts regarding current climate change? Gregor Knorr: "No, not directly. Models used to simulate climate change scenarios for the coming 100 years have a much finer resolution and ice sheet changes are not taken into account. For us it was important to gain a better understanding of how the climate system reacts to dramatic changes over a period of 100,000 years and more. Nevertheless, we cannot rule out that similar mechanisms might also play a role for climate changes in the distant future."
INFORMATION: END
AWI researchers decipher climate paradox from the Miocene
Growth of Antarctic ice sheet triggered warming in the Southern Ocean
2014-04-11
ELSE PRESS RELEASES FROM THIS DATE:
New self-healing plastics developed
2014-04-11
This news release is available in German. Scratches in the car finish or cracks in polymer material: Self-healing materials can repair themselves by restoring their initial molecular structure after the damage. Scientists of the Karlsruhe Institute of Technology and Evonik Industries have developed a chemical crosslinking reaction that ensures good short-term healing properties of the material under mild heating. The research results have now been published in the Advanced Materials journal. DOI:10.1002/adma.201306258
The KIT group headed by Christopher Barner-Kowollik ...
BLOODHOUND team predict the impact of the 1,000 mph supersonic car
2014-04-11
10th of April, 2014 (London). A new paper from the Swansea University, College of Engineering team working on the BLOODHOUND SSC (Supersonic car) project has been published on the aerodynamic characteristics of travelling at 1,000mph. Simulations have looked at how the car will cope with the supersonic rolling ground, rotating wheels and resulting shock waves in close proximity to the test surface at the record attempt site in Hakskeen Pan, South Africa. Where, in 2015, it will make high speed test runs of up to 800mph, with the full 1,000mph attempt scheduled for 2016.
...
Protein researches closing in on the mystery of schizophrenia
2014-04-11
Schizophrenia is a severe disease for which there is still no effective medical treatment. In an attempt to understand exactly what happens in the brain of a schizophrenic person, researchers from the University of Southern Denmark have analyzed proteins in the brains of rats that have been given hallucinogenic drugs. This may pave the way for new and better medicines.
Seven per cent of the adult population suffers from schizophrenia, and although scientists have tried for centuries to understand the disease, they still do not know what causes the disease or which physiological ...
Development of new cell models that report circadian clock function
2014-04-11
Researchers at the University of Memphis and University of Pennsylvania report the development of robust new liver and fat cell models that report circadian clock function. These models are amenable to high throughput drug screening and could be used to find promising small molecules to resynchronize or help body clocks function normally. The consequences of modern life, eating and staying up later, shift work, cell phone addiction, and travel across time zones, all disturb internal clocks. These clocks are found in the brain where they regulate sleep, and also throughout ...
Devil in disguise: A small coral-eating worm may mean big trouble for reefs
2014-04-11
New research from the University of Southampton has identified a coral-eating flatworm as a potential threat for coral reefs.
It is barely possible to see the parasitic worm Amakusaplana acroporae when it sits on its favourite hosts, the staghorn coral Acropora, thanks to its excellent camouflage. However, the researchers found that the small flatworm could cause significant damage to coral reefs.
The scientists from the University of Southampton, who are based at the Coral Reef Laboratory in the National Oceanography Centre, Southampton, published the results of ...
Brain cell discovery could open doors to targeted cancer therapies
2014-04-11
Fresh insights into the processes that control brain cell production could pave the way for treatments for brain cancer and other brain-related disorders.
Scientists have gained new understanding of the role played by a key molecule that controls how and when nerve and brain cells are formed – a process that allows the brain to develop and keeps it healthy. Their findings could help explain what happens when cell production goes out of control, which is a fundamental characteristic of many diseases including cancer.
Researchers have focused on a RNA molecule, known ...
How nerve cells flexibly adapt to acoustic signals
2014-04-11
Researchers at Ludwig-Maximilians-Universitaet (LMU) in Munich have shown how nerve cells flexibly adapt to acoustic signals: Depending on the input signal, neurons generate action potentials either near or far away from the cell body. This flexibility improves our ability to localize sound sources.
In order to process acoustic information with high temporal fidelity, nerve cells may flexibly adapt their mode of operation according to the situation. At low input frequencies, they generate most outgoing action potentials close to the cell body. Following inhibitory or ...
Study resolves controversy over nitrogen's ocean 'exit strategies'
2014-04-11
A decades-long debate over how nitrogen is removed from the ocean may now be settled by new findings from researchers at Princeton University and their collaborators at the University of Washington.
The debate centers on how nitrogen — one of the most important food sources for ocean life and a controller of atmospheric carbon dioxide — becomes converted to a form that can exit the ocean and return to the atmosphere where it is reused in the global nitrogen cycle.
Researchers have argued over which of two nitrogen-removal mechanisms, denitrification and anammox, is ...
Forging iron women
2014-04-11
Published in the Journal of Nutrition, researchers undertook a systematic review and analysis of the effect of iron supplementation to the exercise performance of women aged from .
Lead researcher, Dr Sant-Rayn Pasricha from the Melbourne School of Population and Global Health found that iron supplementation improved women's exercise performance, in terms of both the highest level they could achieve at 100% exertion (maximal capacity) and their exercise efficiency at a submaximal exertion. Women who were given iron were able to perform a given exercise using a lower ...
Eye of the beholder -- improving the human-robot connection
2014-04-11
Researchers are programming robots to communicate with people using human-like body language and cues, an important step toward bringing robots into homes.
Researchers at the University of British Columbia enlisted the help of a human-friendly robot named Charlie to study the simple task of handing an object to a person. Past research has shown that people have difficulty figuring out when to reach out and take an object from a robot because robots fail to provide appropriate nonverbal cues.
"We hand things to other people multiple times a day and we do it seamlessly," ...
LAST 30 PRESS RELEASES:
New register opens to crown Champion Trees across the U.S.
A unified approach to health data exchange
New superconductor with hallmark of unconventional superconductivity discovered
Global HIV study finds that cardiovascular risk models underestimate for key populations
New study offers insights into how populations conform or go against the crowd
Development of a high-performance AI device utilizing ion-controlled spin wave interference in magnetic materials
WashU researchers map individual brain dynamics
Technology for oxidizing atmospheric methane won’t help the climate
US Department of Energy announces Early Career Research Program for FY 2025
PECASE winners: 3 UVA engineering professors receive presidential early career awards
‘Turn on the lights’: DAVD display helps navy divers navigate undersea conditions
MSU researcher’s breakthrough model sheds light on solar storms and space weather
Nebraska psychology professor recognized with Presidential Early Career Award
New data shows how ‘rage giving’ boosted immigrant-serving nonprofits during the first Trump Administration
Unique characteristics of a rare liver cancer identified as clinical trial of new treatment begins
From lab to field: CABBI pipeline delivers oil-rich sorghum
Stem cell therapy jumpstarts brain recovery after stroke
Polymer editing can upcycle waste into higher-performance plastics
Research on past hurricanes aims to reduce future risk
UT Health San Antonio, UTSA researchers receive prestigious 2025 Hill Prizes for medicine and technology
Panorama of our nearest galactic neighbor unveils hundreds of millions of stars
A chain reaction: HIV vaccines can lead to antibodies against antibodies
Bacteria in polymers form cables that grow into living gels
Rotavirus protein NSP4 manipulates gastrointestinal disease severity
‘Ding-dong:’ A study finds specific neurons with an immune doorbell
A major advance in biology combines DNA and RNA and could revolutionize cancer treatments
Neutrophil elastase as a predictor of delivery in pregnant women with preterm labor
NIH to lead implementation of National Plan to End Parkinson’s Act
Growth of private equity and hospital consolidation in primary care and price implications
Online advertising of compounded glucagon-like peptide-1 receptor agonists
[Press-News.org] AWI researchers decipher climate paradox from the MioceneGrowth of Antarctic ice sheet triggered warming in the Southern Ocean