(Press-News.org) This news release is available in German.
Although persistent environmental pollutants have been and continue to be released worldwide, the Arctic and Antarctic regions are significantly more contaminated than elsewhere. The marine animals living there have some of the highest levels of persistent organic pollutant (POP) contamination of any creatures. The Inuit people of the Arctic, who rely on a diet of fish, seals and whales, have also been shown to have higher POP concentrations than people living in our latitudes.
Today, the production and use of nearly two dozen POPs and several ozone-depleting substances have been greatly restricted by two international agreements: the Stockholm Convention and the Montreal Protocol. It is not entirely clear why POPs released mainly during the second half of the 20th century, after being distributed all over the globe by air and ocean currents, have become concentrated in the polar regions. It is therefore difficult to make accurate predictions about the long-term fate of these pollutants. Researchers from ETH Zurich are currently investigating the underlying physical and chemical processes that control the dynamics of these pollutants.
Simulation of real and hypothetical substances
Thus far, discussions have focused primarily on two factors affecting pollutant accumulation, both of which are related to the cold conditions of the polar regions. At low temperatures, chemical compounds are less volatile. Experts have long suspected that these physical (thermodynamic) properties are the main reason for the higher concentrations. Based on this understanding, the concentrations found in the polar regions are the result of the long-term global distribution of POPs, governed by physics. The second factor is that chemical and microbiological degradation of substances is temperature-dependent as well: what are already poorly degradable environmental pollutants degrade even more slowly than they would in the warmer regions of the world. However, this factor was thought to be less influential.
A team of researchers led by Martin Scheringer, a group leader in the Safety and Environmental Technology Group, part of the Department of Chemistry and Applied Biosciences (D-CHAB), has now compared the two effects. The scientists developed a computer model and simulated the persistence of about a dozen actual and several hundred theoretical environmental pollutants. In addition to geographical components such as ocean and air currents, the model took into account the tendency of the substances to occur in water, soil and air, and the speed at which they degrade in these environments.
Only volatile substances reach equilibrium
In their study, the scientists have shown that the theory that posits thermodynamic properties as the key factor applies only to highly volatile substances, which accumulate in the atmosphere, such as chlorofluorocarbons (CFCs), formerly used for coolants, and tetrachloromethane, formerly used in fire extinguishers. "Highly volatile substances are so mobile that they quickly achieve a geographical distribution that is controlled by their thermodynamic properties," says Scheringer.
This is not the case for substances that accumulate mainly in water, soil and the fatty tissues of living organisms, such as the notorious insecticide DDT or the polychlorinated biphenyls (PCBs) used for electrical insulators and joint sealants. "Their pattern of distribution in the environment is determined by slower degradation in cold regions and faster degradation in warm regions," explains Scheringer. They do not reach a thermodynamic equilibrium.
Model calculations offer advantages
"Our model calculation offers advantages over the analysis of concentrations measured in the field," says Scheringer. Although patterns and certain mechanisms are also evident in the measurements, the analysis is affected by measurement uncertainties and substantial background noise. A model calculation, on the other hand, is idealised, making it possible to eliminate the background noise. It also has the advantage of making future projections possible.
Scheringer realises that even if the physical reasons behind the higher concentrations are known, this will not directly change much for the affected inhabitants of the polar regions. "We can no longer take these substances back out of the environment. All we can do is stop releasing them," he said. This is precisely the goal of the Stockholm Convention.
INFORMATION:
Literature reference
Schenker S, Scheringer M, Hungerbühler K: Do Persistent Organic Pollutants Reach a Thermodynamic Equilibrium in the Global Environment? Environmental Science & Technology, online publication 21 March, 2014, doi: 10.1021/es405545w END
The result of slow degradation
2014-04-14
ELSE PRESS RELEASES FROM THIS DATE:
Nutrient-rich forests absorb more carbon
2014-04-14
The ability of forests to sequester carbon from the atmosphere depends on nutrients available in the forest soils, shows new research from an international team of researchers including the International Institute for Applied Systems Analysis (IIASA).
The study showed that forests growing in fertile soils with ample nutrients are able to sequester about 30% of the carbon that they take up during photosynthesis. In contrast, forests growing in nutrient-poor soils may retain only 6% of that carbon. The rest is returned to the atmosphere as respiration.
"This paper produces ...
Scientists open door to better solar cells, superconductors and hard-drives
2014-04-14
Using DESY's bright research light sources, scientists have opened a new door to better solar cells, novel superconductors and smaller hard-drives. The research reported in the scientific journal Nature Communications this week enhances the understanding of the interface of two materials, where completely new properties can arise. With their work, the team of Prof. Andrivo Rusydi from the National University of Singapore and Prof. Michael Rübhausen from the Hamburg Center for Free-Electron Laser Science (CFEL) have solved a long standing mystery in the physics of condensed ...
Combs of light accelerate communication
2014-04-14
This news release is available in German.
Miniaturized optical frequency comb sources allow for transmission of data streams of several terabits per second over hundreds of kilometers – this has now been demonstrated by researchers of Karlsruhe Institute of Technology (KIT) and the Swiss École Polytechnique Fédérale de Lausanne (EPFL) in a experiment presented in the journal Nature Photonics. The results may contribute to accelerating data transmission in large computing centers and worldwide communication networks. (DOI: 10.1038/NPHOTON.2014.57.)
The amount of ...
Proteomics International biomarker study closer to a CDx test for diabetic kidney disease
2014-04-14
April 2014, Perth, Australia. Drug discovery company Proteomics International has completed an important milestone towards the development of a companion diagnostic (CDx) test with the validation of several of its protein biomarkers.
The research team authenticated the panel of biomarkers after taking 508 highly curated disease and control samples. Seven biomarkers were validated at high stringency using the company's proprietary mass spectrometry approach.
The mass spectrometry data was then cross-validated using immunoassays in collaboration with the KTH Royal Institute ...
Beneficial organisms react differently to parasite drug
2014-04-14
The substance ivermectin has been used for more than thirty years all over the world to combat parasites like roundworms, lice and mites in humans, livestock and pets. The active ingredient belongs to the chemical group of avermectins, which generally disrupt cell transport and thus attack pests. When ivermectin is excreted in the faeces of treated animals, at overly high doses it also harms dung-degrading beneficial insects like dung beetles and dung flies. This impairs the functioning of the ecosystem. In extreme cases the dung is not decomposed and the pasture is destroyed.
Sensitivity ...
Does germ plasm accelerate evolution?
2014-04-14
Scientists at The University of Nottingham have published research in the leading academic journal Science that challenges a long held belief about the way certain species of vertebrates evolved.
Dr Matt Loose and Dr Andrew Johnson who are experts in genetics and cell development in the School of Life Sciences carried out the research, funded by the Medical Research Council (MRC). It suggests that genes evolve more rapidly in species containing germ plasm. The results came about as they put to the test a novel theory that early developmental events dramatically alter ...
Novel technique developed by NUS scientists opens door to better solar cells
2014-04-14
A team of scientists, led by Assistant Professor Andrivo Rusydi from the Department of Physics at the National University of Singapore's (NUS) Faculty of Science, has successfully developed a technique to study the interface between materials, shedding light on the new properties that arise when two materials are put together.
With a better understanding of how materials interface, scientists can tweak the properties of different materials more easily, and this opens doors to the development of better solar cells, novel superconductors and smaller hard drives.
The ...
Stanford team develops single cell genomics technique to reverse engineer developing lung
2014-04-14
Consider the marvel of the embryo. It begins as a glob of identical cells that change shape and function as they multiply to become the cells of our lungs, muscles, nerves and all the other specialized tissues of the body.
Now, in a feat of reverse tissue engineering, Stanford researchers have begun to unravel the complex genetic coding that allows embryonic cells to proliferate and transform into all of the specialized cells that perform a myriad of different biological tasks.
A team of interdisciplinary researchers took lung cells from the embryos of mice, choosing ...
Saturn's hexagon: An amazing phenomenon
2014-04-14
In 1980 and 1981 NASA's Voyager 1 and 2 space probes passed for the first time over the planet Saturn, located 1,500 million km from the Sun. Among their numerous discoveries they observed a strange, hexagon-shaped structure in the planet's uppermost clouds surrounding its north pole. The hexagon remained virtually static, without moving, vis-à-vis the planet's overall rotation that was not accurately known. What is more, the images captured by the Voyager probes found that the clouds were moving rapidly inside the hexagon in an enclosed jet stream and were being dragged ...
Longer nurse tenure on hospital units leads to higher quality care
2014-04-14
(NEW YORK, NY, April 14, 2014) – When it comes to the cost and quality of hospital care, nurse tenure and teamwork matters. Patients get the best care when they are treated in units that are staffed by nurses who have extensive experience in their current job, according to a study from researchers at Columbia University School of Nursing and Columbia Business School. The study was published in the current issue of the American Economics Journal: Applied Economics.
The review of more than 900,000 patient admissions over four years at hospitals in the Veterans Administration ...