PRESS-NEWS.org - Press Release Distribution
PRESS RELEASES DISTRIBUTION

Scientists successfully use krypton to accurately date ancient Antarctic ice

Scientists successfully use krypton to accurately date ancient Antarctic ice
2014-04-21
(Press-News.org) CORVALLIS, Ore. – A team of scientists has successfully identified the age of 120,000-year-old Antarctic ice using radiometric krypton dating – a new technique that may allow them to locate and date ice that is more than a million years old.

The ability to discover ancient ice is critical, the researchers say, because it will allow them to reconstruct the climate much farther back into Earth's history and potentially understand the mechanisms that have triggered the planet to shift into and out of ice ages.

Results of the discovery are being published this week in the Proceedings of the National Academy of Sciences. The work was funded by the National Science Foundation and the U.S. Department of Energy.

"The oldest ice found in drilled cores is around 800,000 years old and with this new technique we think we can look in other regions and successfully date polar ice back as far as 1.5 million years," said Christo Buizert, a postdoctoral researcher at Oregon State University and lead author on the PNAS article. "That is very exciting because a lot of interesting things happened with the Earth's climate prior to 800,000 years ago that we currently cannot study in the ice core record."

Krypton dating is much like the more-heralded carbon-14 dating technique that measures the decay of a radioactive isotope – which has constant and well-known decay rates – and compares it to a stable isotope. Unlike carbon-14, however, krypton is a noble gas that does not interact chemically and is much more stable with a half-life of around 230,000 years. Carbon dating doesn't work well on ice because carbon-14 is produced in the ice itself by cosmic rays and only goes back some 50,000 years.

Krypton is produced by cosmic rays bombarding the Earth and then stored in air bubbles trapped within Antarctic ice. It has a radioactive isotope (krypton-81) that decays very slowly, and a stable isotope (krypton-83) that does not decay. Comparing the proportion of stable-to-radioactive isotopes provides the age of the ice.

Though scientists have been interested in radiokrypton dating for more than four decades, krypton-81 atoms are so limited and difficult to count that it wasn't until a 2011 breakthrough in detector technology that krypton-81 dating became feasible for this kind of research. The new atom counter, named Atom Trap Trace Analysis, or ATTA, was developed by a team of nuclear physicists led by Zheng-Tian Lu at Argonne National Laboratory near Chicago.

In their experiment at Taylor Glacier in Antarctica, the researchers put several 300-kilogram (about 660 pounds) chunks of ice into a container and melted it to release the air from the bubbles, which was then stored in flasks. The krypton was isolated from the air at the University of Bern, Switzerland, and sent to Argonne for krypton-81 counting.

"The atom trap is so sensitive that it can capture and count individual atoms," said Buizert, who is in OSU's College of Earth, Ocean, and Atmospheric Sciences. "The only problem is that there isn't a lot of krypton in the air, and thus there isn't much in the ice, either. That's why we need such large samples to melt down."

The group at Argonne is continually improving the ATTA detector, researchers there say, and they aim to perform analysis on an ice sample as small as 20 kilograms in the near future.

The researchers determined from the isotope ratio that the Taylor Glacier samples were 120,000 years old, and validated the estimate by comparing the results to well-dated ice core measurements of atmospheric methane and oxygen from that same period.

Now the challenge is to locate some of the oldest ice in Antarctica, which may not be as easy as it sounds.

"Most people assume that it's a question of just drilling deeper for ice cores, but it's not that simple," said Edward Brook, an Oregon State University geologist and co-author on the study. "Very old ice probably exists in small isolated patches at the base of the ice sheet that have not yet been identified, but in many places it has probably melted and flowed out into the ocean."

There also are special regions where old ice is exposed at the edges of an ice field, Brook pointed out.

"The international scientific community is really interested in exploring for old ice in both types of places and this new dating will really help," Brook said. "There are places where meteorites originating from Mars have been pushed out by glaciers and collect at the margins. Some have been on Earth for a million years or more, so the ice in these spots may be that old as well."

Buizert said reconstructing the Earth's climate back to 1.5 million years is important because a shift in the frequency of ice ages took place in what is known as the Middle Pleistocene transition. The Earth is thought to have shifted in and out of ice ages every 100,000 years or so during the past 800,000 years, but there is evidence that such a shift took place every 40,000 years prior to that time.

"Why was there a transition from a 40,000-year cycle to a 100,000-year cycle?" Buizert said. "Some people believe a change in the level of atmospheric carbon dioxide may have played a role. That is one reason we are so anxious to find ice that will take us back further in time so we can further extend data on past carbon dioxide levels and test this hypothesis."

INFORMATION:

In addition to Buizert and Brook, the research team included Daniel Baggenstos and Jeffrey Severinghaus of the Scripps Institution of Oceanography; Zheng-Tian Lu, Wei Jiang and Peter Müller, Argonne National Laboratory; Roland Purtschert, University of Bern; Vasilii Petrenko, University of Rochester; Tanner Kuhl, University of Wisconsin; James Lee, Oregon State University.

[Attachments] See images for this press release:
Scientists successfully use krypton to accurately date ancient Antarctic ice Scientists successfully use krypton to accurately date ancient Antarctic ice 2

ELSE PRESS RELEASES FROM THIS DATE:

Fast, simple-to-use assay reveals the 'family tree' of cancer metastases

2014-04-21
The process of metastasis – a tumor's ability to spread to other parts of the body – is still poorly understood. It is not easy to determine whether metastasis began early or late in the development of the primary tumor or whether individual metastatic sites were seeded directly from the original tumor or from an intermediate site. Now a research team has developed a simple assay that can reveal the evolutionary relationships among various tumor sites within a patient, information that may someday help with treatment planning. "If we could build a 'family tree' of all ...

Scientists find key steps linking dietary fats and colon cancer tumor growth

Scientists find key steps linking dietary fats and colon cancer tumor growth
2014-04-21
Scientists have shown new genetic evidence that could strengthen the link between the role of dietary fats with colon cancer progression. The study, led by Arizona State University researcher and physician Dr. Raymond DuBois, M.D., Ph.D., has identified a molecular culprit, called peroxisome proliferator-activated receptor delta (PPAR delta), which, when deleted in a mouse model of colon cancer, stopped key steps required for the initiation and progression of tumor growth. "This study has shown without a doubt there is a new function for a key molecule, PPAR delta, ...

Ecology team improves understanding of valley-wide stream chemistry

Ecology team improves understanding of valley-wide stream chemistry
2014-04-21
A geostatistical approach for studying environmental conditions in stream networks and landscapes has been successfully applied at a valley-wide scale to assess headwater stream chemistry at high resolution, revealing unexpected patterns in natural chemical components. "Headwater streams make up the majority of stream and river length in watersheds, affecting regional water quality," said Assistant Professor Kevin J. McGuire, associate director of the Virginia Water Resources Research Center in Virginia Tech's College of Natural Resources and Environment. "However, the ...

A plague in your family

2014-04-21
For the first time, researchers have studied the Black Death bacterium's entire family tree to fully understand how some of the family members evolve to become harmful. Contrary to popular belief, the team found pathogenic members of this bacterial family do not share a recent common disease-causing ancestor, but instead, have followed parallel evolutionary paths to become harmful. The Yersinia family of bacteria has many sub species, some of which are harmful and others not. Two of the most feared members of this bacterial family are Yersinia pestis, the bacterium ...

Malfunction in molecular 'proofreader' prevents repair of UV-induced DNA damage

2014-04-21
PITTSBURGH, April 21, 2014 – Malfunctions in the molecular "proofreading" machinery, which repairs structural errors in DNA caused by ultraviolet (UV) light damage, help explain why people who have the disease xeroderma pigmentosum (XP) are at an extremely high risk for developing skin cancer, according to researchers at the University of Pittsburgh School of Medicine and the University of Pittsburgh Cancer Institute (UPCI). Their findings will be published this week in the early online version of the Proceedings of the National Academy of Sciences. Previous research ...

Penn Medicine researchers uncover hints of a novel mechanism behind general anesthetic action

2014-04-21
(PHILADELPHIA) – Despite decades of common use for surgeries of all kinds, the precise mechanism through which general anesthesia works on the body remains a mystery. This may come as a surprise to the millions of Americans who receive inhaled general anesthesia each year. New research led by the Perelman School of Medicine at the University of Pennsylvania investigated the common anesthetic sevoflurane and found that it binds at multiple key cell membrane protein locations that may contribute to the induction of the anesthetic response. Their findings will appear online ...

Earth Week: Bark beetles change Rocky Mountain stream flows, affect water quality

Earth Week: Bark beetles change Rocky Mountain stream flows, affect water quality
2014-04-21
On Earth Week--and in fact, every week now--trees in mountains across the western United States are dying, thanks to an infestation of bark beetles that reproduce in the trees' inner bark. Some species of the beetles, such as the mountain pine beetle, attack and kill live trees. Others live in dead, weakened or dying hosts. In Colorado alone, the mountain pine beetle has caused the deaths of more than 3.4 million acres of pine trees. What effect do all these dead trees have on stream flow and water quality? Plenty, according to new research findings reported this ...

Krypton-dating technique allows researchers to accurately date ancient Antarctic ice

Krypton-dating technique allows researchers to accurately date ancient Antarctic ice
2014-04-21
A team of scientists, funded by the National Science Foundation (NSF), has successfully used a new technique to confirm the age of a 120,000-year-old sample of Antarctic ice. The new dating system is expected to allow scientists to identify ice that is much older, thereby reconstructing climate much farther back into Earth's history and potentially leading to an understanding of the mechanisms that cause the planet to shift into and out of ice ages. The use of a radiometric-Krypton-dating technique on ice from Antarctica's Taylor Glacier was documented in a paper published ...

Progress made in developing nanoscale electronics

Progress made in developing nanoscale electronics
2014-04-21
Scientists are facing a number of barriers as they try to develop circuits that are microscopic in size, including how to reliably control the current that flows through a circuit that is the width of a single molecule. Alexander Shestopalov, an assistant professor of chemical engineering at the University of Rochester, has done just that, thereby taking us one step closer to nanoscale circuitry. "Until now, scientists have been unable to reliably direct a charge from one molecule to another," said Shestopalov. "But that's exactly what we need to do when working with ...

A gene within a gene contributes to the aggressiveness of acute myeloid leukemia

2014-04-21
COLUMBUS, Ohio – A small gene that is embedded in a larger, well-known gene is the true leukemia-promoting force usually attributed to the larger gene, according to a new study by researchers at The Ohio State University Comprehensive Cancer Center – Arthur G. James Cancer Hospital and Richard J. Solove Research Institute (OSUCCC – James). The findings are published in the journal Science Signaling. The larger host gene is called BAALC (pronounced "Ball C"). The smaller embedded gene is called microRNA-3151 (miR-3151). The study investigated the degree to which each ...

LAST 30 PRESS RELEASES:

Tiny antennas on cells offer new ALS insights

Geothermal aquifers offer green potential but quality checks required

Large Hadron Collider regularly makes magic

Functionality of a grapevine transport protein defined

Changes in store for atmospheric rivers

First results from 2021 rocket launch shed light on aurora’s birth

Patience isn't a virtue; it's a coping mechanism

The Lancet Psychiatry: Autism spectrum disorder ranks among the top 10 causes of non-fatal health burden in youth

Innovative glue maker chosen for Japanese startup program

Digital labels can help grocers waste less food

Clever trick to cook stars like Christmas puds detected for first time

By looking at individual atoms in tooth enamel, UW and PNNL researchers are learning what happens to our teeth as we age

Volunteers should not become friends with patients

Men and residents of higher crime areas see greater benefit from community parks, in reduction of deaths from heart disease

Getting rehab earlier improves concussion outcomes, OHSU study suggests

Potential culprit identified in lingering Crohn’s disease symptoms

Taking a cue from lightning, eco-friendly reactor converts air and water into ammonia

New molecule-creation method a ‘powerful tool’ to accelerate drug synthesis and discovery

New study highlights ethical challenges in conducting cannabis research in Canada

U of A Health Sciences researchers receive $3.4 million grant to improve asthma care in schools

City of Hope research spotlight, November 2024

How tech used by WWI flying aces inspired new cellular behavior discovery

Most women get low grades in healthy eating during and after pregnancy

UMass researchers highlight role ‘workhorse protein’ plays in keeping the nervous system running smoothly

Denali Fault tore apart ancient joining of two landmasses

National Institute awards $2.18 million to Lebeche, Ishrat for innovative stroke research

American Society for Nutrition Foundation and Novo Nordisk Foundation launch two prestigious awards to inspire next-generation innovation in nutrition science

Research shows how music can reduce distress

Growth mindset might help protect mental health during challenging times

Stanford Medicine scientists design workaround that improves response to flu vaccine

[Press-News.org] Scientists successfully use krypton to accurately date ancient Antarctic ice