PRESS-NEWS.org - Press Release Distribution
PRESS RELEASES DISTRIBUTION

First disease-specific human embryonic stem cell line by nuclear transfer

Major step toward cell-based therapies for life-threatening diseases

2014-04-28
(Press-News.org) NEW YORK, NY (April 28, 2014) – Using somatic cell nuclear transfer, a team of scientists led by Dr. Dieter Egli at the New York Stem Cell Foundation (NYSCF) Research Institute and Dr. Mark Sauer at Columbia University Medical Center has created the first disease-specific embryonic stem cell line with two sets of chromosomes.

As reported today in Nature, the scientists derived embryonic stem cells by adding the nuclei of adult skin cells to unfertilized donor oocytes using a process called somatic cell nuclear transfer (SCNT). Embryonic stem cells were created from one adult donor with type 1 diabetes and a healthy control. In 2011, the team reported creating the first embryonic cell line from human skin using nuclear transfer when they made stem cells and insulin-producing beta cells from patients with type 1 diabetes. However, those stem cells were triploid, meaning they had three sets of chromosomes, and therefore could not be used for new therapies.

The investigators overcame the final hurdle in making personalized stem cells that can be used to develop personalized cell therapies. They demonstrated the ability to make a patient-specific embryonic stem cell line that has two sets of chromosomes (a diploid state), the normal number in human cells. Reports from 2013 showed the ability to reprogram fetal fibroblasts using SCNT; however, this latest work demonstrates the first successful derivation by SCNT of diploid pluripotent stem cells from adult and neonatal somatic cells.

"From the start, the goal of this work has been to make patient-specific stem cells from an adult human subject with type 1 diabetes that can give rise to the cells lost in the disease," said Dr. Egli, the NYSCF scientist who led the research and conducted many of the experiments. "By reprograming cells to a pluripotent state and making beta cells, we are now one step closer to being able to treat diabetic patients with their own insulin-producing cells."

"I am thrilled to say we have accomplished our goal of creating patient-specific stem cells from diabetic patients using somatic cell nuclear transfer," said Susan L. Solomon, CEO and co-founder of NYSCF. "I became involved with medical research when my son was diagnosed with type 1 diabetes, and seeing today's results gives me hope that we will one day have a cure for this debilitating disease. The NYSCF laboratory is one of the few places in the world that pursues all types of stem cell research. Even though many people questioned the necessity of continuing our SCNT work, we felt it was critical to advance all types of stem-cell research in pursuit of cures. We don't have a favorite cell type, and we don't yet know what kind of cell is going to be best for putting back into patients to treat their disease."

The research is the culmination of an effort begun in 2006 to make patient-specific embryonic stem cell lines from patients with type 1 diabetes. Ms. Solomon opened NYSCF's privately funded laboratory on March 1, 2006, to facilitate the creation of type 1 diabetes patient-specific embryonic stem cells using SCNT. Initially, the stem cell experiments were done at Harvard and the skin biopsies from type 1 diabetic patients at Columbia; however, isolation of the cell nuclei from these skin biopsies could not be conducted in the federally funded laboratories at Columbia, necessitating a safe-haven laboratory to complete the research. NYSCF initially established its lab, now the largest independent stem cell laboratory in the nation, to serve as the site for this research.

In 2008, all of the research was moved to the NYSCF laboratory when the Harvard scientists determined they could no longer move forward, as restrictions in Massachusetts prevented their obtaining oocytes. Dr. Egli left Harvard University and joined NYSCF; at the same time, NYSCF forged a collaboration with Dr. Sauer who designed a unique egg-donor program that allowed the scientists to obtain oocytes for the research.

"This project is a great example of how enormous strides can be achieved when investigators in basic science and clinical medicine collaborate. I feel fortunate to have been able to participate in this important project," said Dr. Sauer. Dr. Sauer is vice chair of the Department of Obstetrics and Gynecology, professor of obstetrics and gynecology, and chief of reproductive endocrinology at Columbia University Medical Center and program director of assisted reproduction at the Center for Women's Reproductive Care.

Patients with type 1 diabetes lack insulin-producing beta cells, resulting in insulin deficiency and high blood-sugar levels. Therefore, producing beta cells from stem cells for transplantation holds promise as a treatment and potential cure for type 1 diabetes. Because the stem cells are made using a patient's own skin cells, the beta cells for replacement therapy would be autologous, or from the patient, matching the patient's DNA.

Generating autologous beta cells using SCNT is only the first step in developing a complete cell replacement therapy for type 1 diabetes. In type 1 diabetes, the body's immune system attacks its own beta cells; therefore, further work is underway at NYSCF, Columbia, and other institutions to develop strategies to protect existing and therapeutic beta cells from attack by the immune system, as well as to prevent such attack.

The technique described in the report published today can also be translated for use in the development of personalized autologous cell therapies for many other diseases and conditions including Parkinson's disease, macular degeneration, multiple sclerosis, and liver diseases and for replacing or repairing damaged bones.

As part of the work, the scientists systematically analyzed the factors that affect stem-cell derivation after SCNT. The reprogramming of skin cells from a type 1 diabetes patient by SCNT has long been sought, but has been challenging to achieve because of logistical difficulties in obtaining human oocytes for research, as well as an incomplete understanding of the biology of human oocytes.

The scientists found that the addition of specific chemicals, called histone deacetylase inhibitors, and an efficient protocol for human oocyte activation were critical to achieving development to the stage at which embryonic stem cells are derived. These findings are consistent with the 2013 report by Tachibana and colleagues that used fetal cells. Though the authors of the 2013 paper also performed studies with cells of an infant with Leigh syndrome, they did not demonstrate that diploid pluripotent stem cells could be derived from these cells. Because fetal cells are less mature than the cells after birth, it was critical to determine if diploid pluripotent stem cells could be derived from the cells of both infants and adults.

As an additional optimization of the SCNT protocol, the scientists found that it was important to maintain the integrity of the plasma membrane during manipulation, and that to do so, the agent used in the manipulations had to be at a low dose. The scientists applied this optimized protocol to skin cells of a male newborn and the cells of the adult patient with type 1 diabetes. From these two cell lines, the scientists produced a total of four SCNT-derived embryonic stem cell lines. All cell lines were diploid and could give rise to neurons, pancreatic cells, and cartilage, as well as various other cell types, demonstrating their pluripotency. Importantly, the cells of the type 1 diabetes patient also gave rise to insulin-producing beta cells.

Therefore, this is the first report of the derivation of diploid pluripotent stem cells from a patient. And together with a paper published this month in Cell Stem Cell by Chung et al., it is also the first report of diploid embryonic stem cell lines derived from a human after birth.

Dr. Nissim Benvenisty and his laboratory at Hebrew University of Jerusalem collaborated on this report by demonstrating that the cells produced were, in fact, embryonic stem cells by using microarrays to perform gene expression analysis of the cells.

Dr. Rudolph Leibel, a co-author and co-director with Dr. Robin Goland of the Naomi Berrie Diabetes Center, where aspects of these studies were conducted, said, "This accomplishment is the product of an ongoing inter-institutional collaboration across scientific and clinical disciplines, supported by thoughtful philanthropy. The resulting technical and scientific insights bring closer the promise of cell replacement for a wide range of human disease."

NYSCF continues pursuing SCNT research despite many scientific obstacles and in light of the advent of induced pluripotent stem (iPS) cells, as it is not yet clear which type of stem cells will prove best for personalized treatments. Many thought that iPS cells, first created from human cells in 2007, would replace the need for patient-specific embryonic stem cells because they allow patient- and disease-specific stem cell lines to be generated by genetically reprogramming adult cells into becoming pluripotent cells. However, it is not clear how similar iPS cells are to naturally occurring embryonic stem cells, which remain the gold standard, and what will be the preferred cell type for therapies.

Though it is now possible to derive stem cell lines with a patient's genotype using iPS technology, the generation of stem cells using oocytes may have an advantage for use in cell replacement for diseases such as type 1 diabetes. The generation of pluripotent stem cell lines by SCNT uses human oocytes, while iPS cells use recombinant DNA, RNA, or chemicals, each of which requires its own safety testing and approval for clinical use. Human oocytes are already used routinely around the world to generate clinically relevant cells. The generation of pluripotent stem cell lines using human oocytes may therefore be particularly suitable for the development of cell-replacement therapies. Therefore, this work brings the scientists a significant step closer to this goal.

Drs. Mitsutoshi Yamada and Bjarki Johannesson, postdoctoral fellows at the NYSCF Research Institute, were the co-first authors of the paper.

INFORMATION: The study was funded with private funding and by the New York State Stem Cell Science (NYSTEM) Program. It adhered to ethical guidelines adopted by the American Society for Reproductive Medicine and the International Society for Stem Cell Research, as well as protocols reviewed and approved by the institutional review board and stem cell committees of Columbia University.

The New York Stem Cell Foundation (NYSCF) conducts cutting-edge translational stem cell research in its laboratory in New York City and supports research by stem cell scientists at other leading institutions around the world. More information is available at nyscf.org.

Columbia University Medical Center (CUMC) provides international leadership in basic, pre- clinical, and clinical research; in medical and health sciences education; and in patient care. More information is available at cumc.columbia.edu.


ELSE PRESS RELEASES FROM THIS DATE:

UCLA scientists hunt down origin of Huntington's disease in the brain

UCLA scientists hunt down origin of Huntingtons disease in the brain
2014-04-28
The gene mutation that causes Huntington's disease appears in every cell in the body, yet kills only two types of brain cells. Why? UCLA scientists used a unique approach to switch the gene off in individual brain regions and zero in on those that play a role in causing the disease in mice. Published in the April 28 online edition of Nature Medicine, the research sheds light on where Huntington's starts in the brain. It also suggests new targets and routes for therapeutic drugs to slow the devastating disease, which strikes an estimated 35,000 Americans. "From ...

The scent of a man

2014-04-28
Scientists' inability to replicate research findings using mice and rats has contributed to mounting concern over the reliability of such studies. Now, an international team of pain researchers led by scientists at McGill University in Montreal may have uncovered one important factor behind this vexing problem: the gender of the experimenters has a big impact on the stress levels of rodents, which are widely used in preclinical studies. In research published online April 28 in Nature Methods, the scientists report that the presence of male experimenters produced a ...

Mount Sinai scientists identify first gene linked to heart muscle disease in children

Mount Sinai scientists identify first gene linked to heart muscle disease in children
2014-04-28
Scientists at Icahn School of Medicine at Mount Sinai, along with collaborators at institutions in India, Italy, and Japan, have identified the first gene linked to childhood-onset familial dilated cardiomyopathy (DCM), one of the most common heart muscle diseases in children. It is a progressive and potentially fatal heart condition resulting from an enlarged and weakened heart muscle. The study, published in Nature Genetics, also revealed a link between DCM and excessive activation of the protein, mTOR. Currently, there are several existing FDA-approved blocking ...

Viral 'parasites' may play a key role in the maintenance of cell pluripotency

2014-04-28
In a study published in Nature Genetics, scientists from the RIKEN Center for Life Science Technologies in Japan, in collaboration with the RIKEN Center for Integrative Medical Sciences, the University of Copenhagen and the Joint Genome Institute (Walnut Creek, California) have discovered that "jumping DNA" known as retrotransposons—viral elements incorporated into the human genome—may play a key role in the maintenance of pluripotency, the ability of stem cells to differentiate into many different types of body cells. This story is part of a fundamental rethinking taking ...

Researchers identify mechanism of cancer caused by loss of BRCA1 and BRCA2 gene function

2014-04-28
BOSTON – Inherited mutations in the BRCA1 or BRCA2 tumor suppressor genes are by far the most frequent contributors to hereditary cancer risk in the human population, often causing breast or ovarian cancer in young women of child-bearing age. Attempts to test the role that the BRCA genes play in regulating a repair process associated with genome duplication have proven frustratingly difficult in living mammalian cells. Now investigators at Beth Israel Deaconess Medical Center (BIDMC) report a new mechanism by which BRCA gene loss may accelerate cancer-promoting chromosome ...

Multilayer, microscale solar cells enable ultrahigh efficiency power generation

Multilayer, microscale solar cells enable ultrahigh efficiency power generation
2014-04-28
Researchers at the University of Illinois at Urbana-Champaign use a printing process to assemble tiny cells into multilayer stacks for extraordinary levels of photovoltaic conversion efficiency. As an energy source, the Sun has always been a dependable provider. Although it freely shines on everyone, the ability to capture and convert the Sun's abundant energy is anything but free. However, new technologies aimed at achieving "full spectrum" operation in utility-scale photovoltaics may soon make solar energy a viable option. "A few simple ideas in materials science ...

Overlooked cells hold keys to brain organization and disease, UCSF study shows

2014-04-28
Scientists studying brain diseases may need to look beyond nerve cells and start paying attention to the star-shaped cells known as "astrocytes," because they play specialized roles in the development and maintenance of nerve circuits and may contribute to a wide range of disorders, according to a new study by UC San Francisco researchers. In a study published online April 28, 2014 in Nature, the researchers report that malfunctioning astrocytes might contribute to neurodegenerative disorders such as Lou Gehrig's disease (ALS), and perhaps even to developmental disorders ...

Loss of Y chromosome can explain shorter life expectancy and higher cancer risk for men

Loss of Y chromosome can explain shorter life expectancy and higher cancer risk for men
2014-04-28
It is generally well known that men have an overall shorter life expectancy compared to women. A recent study, led by Uppsala University researchers, shows a correlation between a loss of the Y chromosome in blood cells and both a shorter life span and higher mortality from cancer in other organs. Men have a shorter average life span than women and both the incidence and mortality in cancer is higher in men than in women. However, the mechanisms and possible risk factors behind this sex-disparity are largely unknown. Alterations in DNA of normal cells accumulate throughout ...

Extremes in wet, dry spells increasing for South Asian monsoons, Stanford scholars say

2014-04-28
Stanford scientists have identified significant changes in the patterns of extreme wet and dry events that are increasing the risk of drought and flood in central India, one of the most densely populated regions on Earth. The discoveries, detailed in the April 28 issue of the journal Nature Climate Change, are the result of a new collaboration between climate scientists and statisticians that focused on utilizing statistical methods for analyzing rare geophysical events. These new approaches reveal that the intensity of extremely wet spells and the number of extremely ...

Indiana University researchers gauge the toll of trampoline fractures on children

Indiana University researchers gauge the toll of trampoline fractures on children
2014-04-28
INDIANAPOLIS -- Trampoline accidents sent an estimated 288,876 people, most of them children, to hospital emergency departments with broken bones from 2002 to 2011, at a cost of more than $400 million, according to an analysis by researchers at the Indiana University School of Medicine. Including all injuries, not just fractures, hospital emergency rooms received more than 1 million visits from people injured in trampoline accidents during those 10 years, boosting the emergency room bills to just over $1 billion, according to the study. The research, published online ...

LAST 30 PRESS RELEASES:

Inflammation may explain stomach problems in psoriasis sufferers

Guidance on animal-borne infections in the Canadian Arctic

Fatty muscles raise the risk of serious heart disease regardless of overall body weight

HKU ecologists uncover significant ecological impact of hybrid grouper release through religious practices

New register opens to crown Champion Trees across the U.S.

A unified approach to health data exchange

New superconductor with hallmark of unconventional superconductivity discovered

Global HIV study finds that cardiovascular risk models underestimate for key populations

New study offers insights into how populations conform or go against the crowd

Development of a high-performance AI device utilizing ion-controlled spin wave interference in magnetic materials

WashU researchers map individual brain dynamics

Technology for oxidizing atmospheric methane won’t help the climate

US Department of Energy announces Early Career Research Program for FY 2025

PECASE winners: 3 UVA engineering professors receive presidential early career awards

‘Turn on the lights’: DAVD display helps navy divers navigate undersea conditions

MSU researcher’s breakthrough model sheds light on solar storms and space weather

Nebraska psychology professor recognized with Presidential Early Career Award

New data shows how ‘rage giving’ boosted immigrant-serving nonprofits during the first Trump Administration

Unique characteristics of a rare liver cancer identified as clinical trial of new treatment begins

From lab to field: CABBI pipeline delivers oil-rich sorghum

Stem cell therapy jumpstarts brain recovery after stroke

Polymer editing can upcycle waste into higher-performance plastics

Research on past hurricanes aims to reduce future risk

UT Health San Antonio, UTSA researchers receive prestigious 2025 Hill Prizes for medicine and technology

Panorama of our nearest galactic neighbor unveils hundreds of millions of stars

A chain reaction: HIV vaccines can lead to antibodies against antibodies

Bacteria in polymers form cables that grow into living gels

Rotavirus protein NSP4 manipulates gastrointestinal disease severity

‘Ding-dong:’ A study finds specific neurons with an immune doorbell

A major advance in biology combines DNA and RNA and could revolutionize cancer treatments

[Press-News.org] First disease-specific human embryonic stem cell line by nuclear transfer
Major step toward cell-based therapies for life-threatening diseases