(Press-News.org) CAMBRIDGE, MA -- Launched in 2013, the national BRAIN Initiative aims to revolutionize our understanding of cognition by mapping the activity of every neuron in the human brain, revealing how brain circuits interact to create memories, learn new skills, and interpret the world around us.
Before that can happen, neuroscientists need new tools that will let them probe the brain more deeply and in greater detail, says Alan Jasanoff, an MIT associate professor of biological engineering. "There's a general recognition that in order to understand the brain's processes in comprehensive detail, we need ways to monitor neural function deep in the brain with spatial, temporal, and functional precision," he says.
Jasanoff and colleagues have now taken a step toward that goal: They have established a technique that allows them to track neural communication in the brain over time, using magnetic resonance imaging (MRI) along with a specialized molecular sensor. This is the first time anyone has been able to map neural signals with high precision over large brain regions in living animals, offering a new window on brain function, says Jasanoff, who is also an associate member of MIT's McGovern Institute for Brain Research.
His team used this molecular imaging approach, described in the May 1 online edition of Science, to study the neurotransmitter dopamine in a region called the ventral striatum, which is involved in motivation, reward, and reinforcement of behavior. In future studies, Jasanoff plans to combine dopamine imaging with functional MRI techniques that measure overall brain activity to gain a better understanding of how dopamine levels influence neural circuitry.
"We want to be able to relate dopamine signaling to other neural processes that are going on," Jasanoff says. "We can look at different types of stimuli and try to understand what dopamine is doing in different brain regions and relate it to other measures of brain function."
Tracking dopamine
Dopamine is one of many neurotransmitters that help neurons to communicate with each other over short distances. Much of the brain's dopamine is produced by a structure called the ventral tegmental area (VTA). This dopamine travels through the mesolimbic pathway to the ventral striatum, where it combines with sensory information from other parts of the brain to reinforce behavior and help the brain learn new tasks and motor functions. This circuit also plays a major role in addiction.
To track dopamine's role in neural communication, the researchers used an MRI sensor they had previously designed, consisting of an iron-containing protein that acts as a weak magnet. When the sensor binds to dopamine, its magnetic interactions with the surrounding tissue weaken, which dims the tissue's MRI signal. This allows the researchers to see where in the brain dopamine is being released. The researchers also developed an algorithm that lets them calculate the precise amount of dopamine present in each fraction of a cubic millimeter of the ventral striatum.
After delivering the MRI sensor to the ventral striatum of rats, Jasanoff's team electrically stimulated the mesolimbic pathway and was able to detect exactly where in the ventral striatum dopamine was released. An area known as the nucleus accumbens core, known to be one of the main targets of dopamine from the VTA, showed the highest levels. The researchers also saw that some dopamine is released in neighboring regions such as the ventral pallidum, which regulates motivation and emotions, and parts of the thalamus, which relays sensory and motor signals in the brain.
Each dopamine stimulation lasted for 16 seconds and the researchers took an MRI image every eight seconds, allowing them to track how dopamine levels changed as the neurotransmitter was released from cells and then disappeared. "We could divide up the map into different regions of interest and determine dynamics separately for each of those regions," Jasanoff says.
He and his colleagues plan to build on this work by expanding their studies to other parts of the brain, including the areas most affected by Parkinson's disease, which is caused by the death of dopamine-generating cells. Jasanoff's lab is also working on sensors to track other neurotransmitters, allowing them to study interactions between neurotransmitters during different tasks.
INFORMATION:
The paper's lead author is postdoc Taekwan Lee. Technical assistant Lili Cai and postdocs Victor Lelyveld and Aviad Hai also contributed to the research, which was funded by the National Institutes of Health and the Defense Advanced Research Projects Agency.
Written by Anne Trafton, MIT News Office
Delving deep into the brain
2014-05-02
ELSE PRESS RELEASES FROM THIS DATE:
US corn yields are increasingly vulnerable to hot, dry weather, Stanford research shows
2014-05-02
Corn yields in the central United States have become more sensitive to drought conditions in the past two decades, according to Stanford research.
The study, which appears in the journal Science, was led by Stanford's David Lobell, associate professor of environmental Earth system science and associate director of the Center on Food Security and the Environment. "The Corn Belt is phenomenally productive," Lobell said, referring to the region of Midwestern states where much of the country's corn is grown. "But in the past two decades we saw very small yield gains in non-irrigated ...
New insights into bacterial substitute for sex
2014-05-02
Bacteria don't have sex as such, but they can mix their genetic material by pulling in DNA from dead bacterial cells and inserting these into their own genome.
New research led by Imperial College London has found that this process – called recombination – is more complex than was first thought. The findings, published today in PLoS Genetics, could help us understand why bacteria which cause serious diseases are able to evade vaccines and rapidly become drug-resistant.
Dr Rafal Mostowy of Imperial College London's School of Public Health explains: "During recombination, ...
Clinical opinion published in American Journal of Obstetrics and Gynecology
2014-05-02
When a woman requires gynecologic surgery, she and her surgeon have several minimally invasive surgical options, including robotic surgery. In recent years, the use of robotic surgery has become more and more common. But questions have arisen about the potential overuse of robotic surgery and its advantages over traditional laparotomy for hysterectomy.
A clinical opinion by Charles Rardin, MD, a urogynecologist in the Division of Urogynecology and Reconstructive Surgery and director of the Robotic Surgery Program for Women at Women & Infants Hospital of Rhode Island, ...
Elevated liver enzyme levels linked to higher gestational diabetes risk
2014-05-02
OAKLAND, Calif., May 2, 2014 — Women with high levels of a common liver enzyme measured prior to pregnancy were twice as likely to subsequently develop gestational diabetes than those with the lowest levels, according to a Kaiser Permanente study published today in the journal Diabetes Care.
The liver plays an important role in regulating glucose levels in the body. The liver enzyme, called gamma-glutamyl transferase (known as GGT), is a common marker of liver function and has also been associated with insulin resistance, which can be a precursor to gestational diabetes ...
MERS coronavirus can be transmitted from camel to man
2014-05-02
The so-called Middle East respiratory syndrome (MERS) coronavirus was first found in June 2012 in a patient from Saudi Arabia, who suffered from severe pneumonia. Since this time more than 300 persons have developed an infection, of whom about a third died. The fact that the Arabian camel is the origin of the infectious disease has been confirmed recently. The transmission pathways of the viruses, however, have not been clear until now.
Viruses in humans and camels from one region are identical
Virologists Norbert Nowotny and Jolanta Kolodziejek from the Institute ...
Approaching the island of stability: Observation of the superheavy element 117
2014-05-02
The periodic table of the elements is to get crowded towards its heaviest members. Evidence for the artificial creation of element 117 has recently been obtained at the GSI Helmholtz Centre for Heavy Ion Research, an accelerator laboratory located in Darm-stadt, Germany. The experiment was performed by an international team of chemists and physicists headed by Prof. Christoph Düllmann, who holds positions at GSI, Johannes Gutenberg University Mainz (JGU), and the Helmholtz Institute Mainz (HIM). The team included 72 scientists and engineers from 16 institutions in Australia, ...
Sofosbuvir: Indication of added benefit for specific patients
2014-05-02
The drug sofosbuvir has been available since January 2014 as a treatment for chronic hepatitis C infection. In an early benefit assessment pursuant to the Act on the Reform of the Market for Medicinal Products (AMNOG), the German Institute for Quality and Efficiency in Health Care (IQWiG) has now examined whether the new drug offers added benefit in comparison with the appropriate comparator therapy.
The dossier submitted by the drug manufacturer provides indications of added benefit for non-pretreated patients infected with the virus of genotype 2. However, the extent ...
Out of shape? Your memory may suffer
2014-05-02
EAST LANSING, Mich. --- Here's another reason to drop that doughnut and hit the treadmill: A new study suggests aerobic fitness affects long-term memory.
Michigan State University researchers tested 75 college students during a two-day period and found those who were less fit had a harder time retaining information.
"The findings show that lower-fit individuals lose more memory across time," said Kimberly Fenn, study co-author and assistant professor of psychology.
The study, which appears online in the research journal Cognitive, Affective & Behavioral Neuroscience, ...
A 30-year puzzle in breast cancer is solved
2014-05-02
In a new study published today in Cell Reports, scientists at the Fred Hutchinson Cancer Research Center demonstrate that mice lacking one copy of a gene called CTCF have abnormal DNA methylation and are markedly predisposed to cancer. CTCF is a very well-studied DNA binding protein that exerts a major influence on the architecture of the human genome, but had not been previously linked to cancer. Over 30 years ago, frequent loss of one copy of chromosome 16 was first reported in breast cancer but the gene or genes responsible remained to be identified. Dr. Gala Filippova, ...
Autoimmune diseases may succumb to new drug strategy
2014-05-02
New pharmaceuticals to fight autoimmune diseases, such as multiple sclerosis, rheumatoid arthritis and psoriasis, may be identified more effectively by adding genome analysis to standard drug screening, according to a new study by a research team led by UC San Francisco and Harvard researchers, in collaboration with Tempero and GlaxoSmithKlein.
In a study reported online April 17, 2014 in the journal Immunity, the scientists combined drug screening with state-of-the-art techniques for analyzing the genome, leading to three small molecules that improved symptoms in a mouse ...