(Press-News.org) The world has great expectations that stem cell research one day will revolutionize medicine. But in order to exploit the potential of stem cells, we need to understand how their development is regulated. Now researchers from University of Southern Denmark offer new insight.
Stem cells are cells that are able to develop into different specialized cell types with specific functions in the body. In adult humans these cells play an important role in tissue regeneration. The potential to act as repair cells can be exploited for disease control of e.g. Parkinson's or diabetes, which are diseases caused by the death of specialized cells. By manipulating the stem cells, they can be directed to develop into various specialized cell types. This however, requires knowledge of the processes that regulate their development.
Now Danish researchers from University of Southern Denmark report a new discovery that provides valuable insight into basic mechanisms of stem cell differentiation. The discovery could lead to new ways of making stem cells develop into exactly the type of cells that a physician may need for treating a disease.
"We have discovered that proteins called transcription factors work together in a new and complex way to reprogram the DNA strand when a stem cell develops into a specific cell type. Until now we thought that only a few transcription factors were responsible for this reprogramming, but that is not the case", explain postdoc Rasmus Siersbaek, Professor Susanne Mandrup and ph.d. Atefeh Rabiee from Department of Biochemistry and Molecular Biology at the University of Southern Denmark.
"An incredibly complex and previously unknown interplay between transcription factors takes place at specific locations in the cell's DNA, which we call 'hotspots'. This interplay at 'hotspots' appears to be of great importance for the development of stem cells. In the future it will therefore be very important to explore these 'hotspots' and the interplay between transcription factors in these regions in order to better understand the mechanisms that control the development of stem cells", explains Rasmus Siersbaek.
"When we understand these mechanisms, we have much better tools to make a stem cell develop in the direction we wish", he says.
Siersbaek, Mandrup and their colleagues made the discovery while studying how stem cells develop into fat cells. The Mandrup research group is interested in this differentiation process, because fundamental understanding of this will allow researchers to manipulate fat cell formation.
"We know that there are two types of fat cells; brown and white. The white fat cells store fat, while brown fat cells actually increase combustion of fat. Brown fat cells are found in especially infants, but adults also have varying amounts of these cells.
"If we manage to find ways to make stem cells develop into brown rather than white fat cells, it may be possible to reduce the development of obesity. Our findings open new possibilities to do this by focusing on the specific sites on the DNA where proteins work together", the researchers explain.
Details of the study
The researchers worked with a well-known cell line that can be induced to develop into fat cells in about a week in the laboratory using a specific cocktail of hormones. It has been known for many years that this process is regulated by proteins in the cells called transcription factors that control which genes are turned on and off during development of the fat cell.
So far it has been unclear how all these proteins work together to create a fat cell. In this paper, the researchers report that transcription factors bind together to special places in the cell's genome called 'hotspots' . Here transcription factors 'talk' to each other and cooperate in controlling which genes are switched on and off. 'Hotspots' therefore act as key hubs in the genome where different signals are integrated on a small piece of DNA.
The researchers further showed that there are often several of these 'hotspots' close to each other and that they work together to form large so-called 'super-enhancers' . These 'super-enhancers' seem to be extra important in order to activate the right genes during fat cell development.
This study thus shows an extremely high degree of cooperativity between transcription factors at the level of DNA, which seems to be very important for directing the development of stem cells.
INFORMATION:
Ref: Cell Reports, May 22 2014: Molecular Architecture of Transcription Factor Hotspots in Early Adipogenesis.
Rasmus Siersbæk, Songjoon Baek, Atefeh Rabiee, Ronni Nielsen, Sofie Traynor, Nicholas Clark, Albin Sandelin, Ole N. Jensen, Myong-Hee Sung, Gordon L. Hager and Susanne Mandrup.
http://dx.doi.org/10.1016/j.celrep.2014.04.043
Cell Reports, May 22 2014: Transcription Factor Cooperativity in Early Adipogenic Hotspots and Super-Enhancers. Rasmus Siersbæk, Atefeh Rabiee, Ronni Nielsen, Simone Sidoli, Sofie Traynor, Anne Loft, Lars La Cour Poulsen, Adelina Rogowska-Wrzesinska, Ole N. Jensen, and Susanne Mandrup.
http://dx.doi.org/10.1016/j.celrep.2014.04.042
Contact:
Rasmus Siersbaek, postdoc, rasmussi@bmb.sdu.dk , tel +45 65502492 and +45 61713612.
Susanne Mandrup, Professor and research director of Mandrup Group, email: s.mandrup@bmb.sdu.dk. Tel +45 65502340 and +45 60112340.
New insight into stem cell development
2014-05-22
ELSE PRESS RELEASES FROM THIS DATE:
Study: Some pancreatic cancer treatments may be going after the wrong targets
2014-05-22
ANN ARBOR, Mich. — New research represents a significant change in the understanding of how pancreatic cancer grows – and how it might be defeated.
Unlike other types of cancer, pancreatic cancer produces a lot of scar tissue and inflammation. For years, researchers believed that this scar tissue, called desmoplasia, helped the tumor grow, and they've designed treatments to attack this.
But new research led by Andrew D. Rhim, M.D., from the University of Michigan Comprehensive Cancer Center, finds that when you eliminate desmoplasia, tumors grow even more quickly and ...
'I can' mentality goes long way after childbirth
2014-05-22
The way a woman feels about tackling everyday physical activities, including exercise, may be a predictor of how much weight she'll retain years after childbirth says a Michigan State University professor.
James Pivarnik, a professor of kinesiology and epidemiology at MSU, co-led a study that followed 56 women during pregnancy and measured their physical activity levels, along with barriers to exercise and the ability to overcome them.
Six years later, the research team followed up with more than half of the participants and found that the women who considered themselves ...
What is being said in the media and academic literature about neurostimulation?
2014-05-22
Over the past several decades, neurostimulation techniques such as transcranial direct current stimulation (tDCS) have gradually gained favour in the public eye. In a new report, published yesterday in the prestigious scientific journal Neuron, IRCM ethics experts raise important questions about the rising tide of tDCS coverage in the media, while regulatory action is lacking and ethical issues need to be addressed.
TDCS is a non-invasive form of neurostimulation, in which constant, low current is delivered directly to areas of the brain using small electrodes. Originally ...
EuroPCR 2014 examines whether science translates into practice with new session format
2014-05-22
22 May 2014, Paris, France: The value of analysing published clinical trials and the benefit of informed discussion were highlighted yesterday when the ACCOAST trial data were discussed in a new session format—Will this trial change my practice?— at EuroPCR 2014. ACCOAST trial results demonstrate that pre-treatment with prasugrel in NSTEMI patients undergoing percutaneous coronary intervention (PCI) is inferior to treatment with the drug after angiography. Several other trials are also being scrutinised in the same format, which ends with a discussion with the audience ...
New details on microtubules and how the anti-cancer drug Taxol works
2014-05-22
A pathway to the design of even more effective versions of the powerful anti-cancer drug Taxol has been opened with the most detailed look ever at the assembly and disassembly of microtubules, tiny fibers of tubulin protein that form the cytoskeletons of living cells and play a crucial role in mitosis. Through a combination of high-resolution cryo-electron microscopy (cryo-EM) and new methodology for image analysis and structure interpretation, researchers with the Lawrence Berkeley National Laboratory (Berkeley Lab) and the University of California (UC) Berkeley have produced ...
Which way is up?
2014-05-22
What do sled dogs and cell clusters have in common? According to research by UC Santa Barbara's Denise Montell, they both travel in groups and need a leader to make sure they all follow in the same direction.
Montell, Duggan Professor of Molecular Cellular and Developmental Biology, and colleagues worked on three independent projects involving E-cadherin, a protein found in epithelial cells throughout the body. The researchers used fruit-fly ovaries to uncover the role played by E-cadherin in collective cell migration. Their findings are reported today in the journal ...
Eumelanin's secrets
2014-05-22
CAMBRIDGE, Mass-- Melanin — and specifically, the form called eumelanin — is the primary pigment that gives humans the coloring of their skin, hair, and eyes. It protects the body from the hazards of ultraviolet and other radiation that can damage cells and lead to skin cancer, but the exact reason why the compound is so effective at blocking such a broad spectrum of sunlight has remained something of a mystery.
Now researchers at MIT and other institutions have solved that mystery, potentially opening the way for the development of synthetic materials that could have ...
US obesity epidemic making all segments of the nation fatter, study finds
2014-05-22
The nation's obesity epidemic is striking all groups of Americans, affecting those with more education and those with less education, as well as all ethnic groups, according to a new analysis that challenges prevailing assumptions about the reasons why the nation is getting heavier.
While some differences in weight are evident between groups based on race and education levels, all Americans have been getting fatter at about the same rate for the past 25 years, even as the nation saw increases in leisure time, increased availability of fruit and vegetables, and increases ...
Being Sardinian puts a smile on the face of the elderly
2014-05-22
Residents of the Italian island of Sardinia are known for their longevity. Now, a new study also shows that elderly Sardinians are less depressed and generally are in a better mental frame of mind than peers living elsewhere. The study, led by Maria Chiara Fastame and Maria Pietronilla Penna of the University of Cagliari in Italy and Paul Hitchcott from the Southampton Solent University in UK, is published in Springer's journal Applied Research in Quality of Life.
Various tests to measure the mental state and capacity of elderly people were performed on 191 cognitively ...
Gene therapy extends survival in an animal model of spinal muscular atrophy
2014-05-22
New Rochelle, NY, May 22, 2014—To make up for insufficient amounts of SMN protein, the cause of the inherited neuromuscular disease spinal muscular atrophy (SMA), researchers have successfully delivered a replacement SMN1 gene directly to the spinal cords of animal models of SMA. A new study demonstrating that enough copies of the SMN1 gene can be delivered to the spinal cord motor neurons to extend the survival of the treated animals is published in Human Gene Therapy, a peer-reviewed journal from Mary Ann Liebert, Inc., publishers. The article is available free on the ...