(Press-News.org) JUPITER, FL, June 5, 2014 – Scientists from the Florida campus of The Scripps Research Institute (TSRI) have found new targets for potential intervention in breast cancer. These new targets could eventually increase effectiveness and reduce the undesirable side effects associated with current treatments.
The study was published online ahead of print on June 5, 2014 by the journal Structure.
Approximately two out of three breast cancers are driven by receptors that bind the hormones estrogen and progesterone—when the hormones bind to these receptors in cancer cells, they signal the cancer cells to grow. What makes the progesterone receptor therapeutically interesting is that it has two activation domains—AF1 and AF2. Normally, both are needed for full activation of the receptor.
"Using hydrogen-deuterium exchange technology, our study pinpoints just how AF2 communicates with AF1—the first evidence of the long-range interaction between these two functional domains," said Patrick R. Griffin, a TSRI professor who led the study. "These findings support further research to look for promising small molecules that block that interaction."
The findings are especially important because in some mutations AF2 is deleted, yet the receptor still drives the cancer using its AF1 domain. Current drugs used for treating these cancers only target the AF2 domain, so with nothing to bind to, they do not work at all. While several studies have shown the importance of AF1, its binding domain is remarkably dynamic, frequently shifting shape and making it difficult to target with drugs.
In the new study, the scientists used an advanced technology known as hydrogen-deuterium exchange mass spectrometry (HDX) to measure the intricate interactions between the AF1 and AF2 domains of the progesterone receptor.
HDX mass spectrometry is a high-precision, high-sensitivity mapping technique that enabled the scientists to determine the specific regions of the receptor that are altered upon interaction. This information was used to infer structural changes that result from the interaction and to probe the conformational flexibility of intact multidomain proteins.
In addition to exploring potential new drugs for breast cancer, the researchers also hope to investigate the implications for prostate cancer, another hormone-driven disease.
"Many features of the androgen receptor are similar to progesterone receptor, as they belong to the same subfamily of steroid receptors," said Devrishi Goswami, the first author of the study and a member of the Griffin laboratory. "It could work the very same way. So these new insights may also help in finding new approaches to treating hormone-therapy-resistant prostate cancer."
INFORMATION:
In addition to Goswami and Griffin, other authors of the study, "Influence of Domain Interactions on Conformational Mobility of the Progesterone Receptor as Detected by Hydrogen/Deuterium Exchange Mass Spectrometry," include Bruce Pascal of The Scripps Research Institute; Celetta Callaway and Dean P. Edwards of the Baylor College of Medicine; and Raj Kumar of The Commonwealth Medical College, Scranton, Pennsylvania.
The study was supported by The National Institutes of Health (grants CA046938 and GM84041) and the National Cancer Institute (grant P30CA123125).
Scientists find new targets that could increase effectiveness of breast cancer treatments
2014-06-05
ELSE PRESS RELEASES FROM THIS DATE:
Researchers at the Gladstone Institutes find novel approach to reactivate latent HIV
2014-06-05
SAN FRANCISCO, CA–June 5, 2014–A team of scientists at the Gladstone Institutes has identified a new way to make latent HIV reveal itself, which could help overcome one of the biggest obstacles to finding a cure for HIV infection. They discovered that increasing the random activity, or noise, associated with HIV gene expression–without increasing the average level of gene expression–can reactivate latent HIV. Their findings were published today in the journal Science.
When HIV infects an immune cell, it inserts its genetic material into the DNA of the infected cell. In ...
Demographics drive fitness partner decisions online, Penn study finds
2014-06-05
Who would you rather have as a fitness partner: a paragon of athleticism and dedication who could motivate you to exceed your current level of fitness or an equal, with whom you could exchange tips and encouragement on the road to better health?
Or neither? According to a new study led by University of Pennsylvania's Damon Centola, participants in an online fitness program ignored the fitness aptitude of their potential partners.
"Instead they chose contacts based on characteristics that would largely be observable in regular, offline face-to-face networks: age, gender ...
New tuberculosis test more than skin deep
2014-06-05
A new screening process for tuberculosis (TB) infections in Canadian prisons could mean that more than 50 per cent of those screened won't undergo unnecessary treatment due to false positives.
According to research by Wendy Wobeser and medical resident Ilan Schwartz, a test for TB using interferon-gamma release assays (IGRA) will detect a pre-existing TB infection, or latent TB, that might not present itself for many years, or until the body becomes weakened by another source.
"It's fairly uncommon that latent TB will reactivate – only about a 10 per cent chance," says ...
Seemingly invincible cancers stem cells reveal a weakness
2014-06-05
CAMBRIDGE, Mass. (June 5, 2014) – Metastatic cancer cells, which can migrate from primary tumors to seed new malignancies, have thus far been resistant to the current arsenal of anticancer drugs. Now, however, researchers at Whitehead Institute have identified a critical weakness that actually exploits one of these cells' apparent strengths—their ability to move and invade tissues.
"This is the first vulnerability of invasive cancer cells that we really understand," says Whitehead Member Piyush Gupta, whose lab's latest work is described in the June issue of the journal ...
New evidence links air pollution to autism, schizophrenia
2014-06-05
A new study published in the journal Environmental Health Perspectives describes how exposure to air pollution early in life produces harmful changes in the brains of mice, including an enlargement of part of the brain that is seen in humans who have autism and schizophrenia.
As in autism and schizophrenia, the changes occurred predominately in males. The mice also performed poorly in tests of short-term memory, learning ability, and impulsivity.
The new findings are consistent with several recent studies that have shown a link between air pollution and autism ...
New findings out on brain networks in children at risk for mental disorders
2014-06-05
DETROIT – Attention deficits are central to psychiatric disorders such as schizophrenia or bipolar disorder, and are thought to precede the presentation of the illnesses. A new study led by Wayne State University School of Medicine researcher Vaibhav Diwadkar, Ph.D. suggests that the brain network interactions between regions that support attention are dysfunctional in children and adolescents at genetic risk for developing schizophrenia and bipolar disorder.
"The brain network mechanisms that mediate these deficits are poorly understood, and have rarely been tackled ...
Rice developing mobile DNA test for HIV
2014-06-05
Rice University bioengineers are developing a simple, highly accurate test to detect signs of HIV and its progress in patients in resource-poor settings.
The current gold standard to diagnose HIV in infants and to monitor viral load depends on lab equipment and technical expertise generally available only in clinics, said Rice bioengineer Rebecca Richards-Kortum. The new research features a nucleic acid-based test that can be performed at the site of care.
Richards-Kortum, director of the Rice 360˚: Institute for Global Health Technologies, and her colleagues reported ...
Iowa State, Ames Lab researchers find the mechanism that forms cell-to-cell catch bonds
2014-06-05
AMES, Iowa – Certain bonds connecting biological cells get stronger when they're tugged. Those bonds could help keep hearts together and pumping; breakdowns of those bonds could help cancer cells break away and spread.
Those bonds are known as catch bonds and they're formed by common adhesion proteins called cadherins. Sanjeevi Sivasankar, an Iowa State University assistant professor of physics and astronomy and an associate of the U.S. Department of Energy's Ames Laboratory, has described catch bonds as "nanoscale seatbelts. They become stronger when pulled."
But how ...
Short nanotubes target pancreatic cancer
2014-06-05
Short, customized carbon nanotubes have the potential to deliver drugs to pancreatic cancer cells and destroy them from within, according to researchers at Rice University and the University of Texas MD Anderson Cancer Center.
Pristine nanotubes produced through a new process developed at Rice can be modified to carry drugs to tumors through gaps in blood-vessel walls that larger particles cannot fit through.
The nanotubes may then target and infiltrate the cancerous cells' nuclei, where the drugs can be released through sonication – that is, by shaking them.
The ...
LSU biologist James Caprio, Japanese colleagues identify unique way catfish locate prey
2014-06-05
BATON ROUGE – Animals incorporate a number of unique methods for detecting prey, but for the Japanese sea catfish, Plotosus japonicus, it is especially tricky given the dark murky waters where it resides.
John Caprio, George C. Kent Professor of Biological Sciences at LSU, and colleagues from Kagoshima University in Japan have identified that these fish are equipped with sensors that can locate prey by detecting slight changes in the water's pH level.
A paper, "Marine teleost locates live prey through pH sensing," detailing the work of Caprio and his research partners, ...