(Press-News.org) Confined water exists widely and plays important roles in natural environments, particularly inside biological nanochannels. Professor Lei Jiang and his group from State Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, set out to study this unified bionic frontier. After several years of innovative research, they developed a series of biomimetic nanochannels, delivered a strategy for the design and construction of smart nanochannels and applied the nanochannels in energy conversion systems. The author thought the inner surface property was the base for confined transportation. Their work, entitled "Construction of biomimetic smart nanochannels for confined water", was published in National Science Review. 2014, Vol 1 (1).
Nature has always greatly inspired technology, engineering and significant inventions. Through four billion year's evolution, the natural world exhibits all measures of perfect design and intelligence. For example, the lotus can realize the self-cleaning effect using its micro/nano-composite structure. The water striders can walk easily and freely on the water surface via the special micro- and nano-structure on their legs. Similarly, there are numerous functional units that can interact with water molecules in organisms. The protein-based ion channels are the good examples for these functional units, which play important roles in many physiological processes, such as cellular signal transfer, energy conversion, potential adjusting, matter exchange and systemic function adjusting. One remarkable example is the electric eel, which is capable of generating potentials of ~600 V to stun prey and ward off predators with highly selective ion channels and pumps on its cell membrane. Therefore, learning from nature could help us develop smart materials and system.
Bio-inspired from nature, Jiang's group has achieved great research results in water related sciences including two dimensional interfaces with wetting, dewetting and superwetting properties. Based on this work, Jiang and coworkers transferred their research interest to non-aqueous systems, where they focused on the oil wetting property. From this they developed self-cleaning surfaces under water with inspiration coming from fish skin. Recently, Jiang's group focused on the confined water in one dimensional nano-structure materials. The study examined the confined water on the outer surfaces of one dimensional nano-structured materials including spider silk and cactus thorn, which can be used to collect water in air. They also studied confined water existing in nanochannel, which included the construction and application of bio-inspired nanochannels. In this review, Prof. Jiang expatiated the confined water that exists in one-dimensional micro/nano composite structures in detail, particularly inside biological nanochannels. Using these nanochannels as inspiration, they provided a strategy for the design and construction of biomimetic smart nanochannels. Importantly, they have applied the abiotic analogs to energy conversion systems.
The confined water, that is water confined in micro- or mesopores, not only plays an important role in maintaining the existence and development of living organisms, but also concerns the sustainable development of human society. Research results of bio-inspired spider silk and cactus thorn showed the confined water collection on these one dimensional nanostructures was helpful in solving the shortage of freshwater resources. Meanwhile, biological ion channels played key roles for high efficient energy conversion in organisms due to its nanoscale effect and ion selectivity. This perfect unification keeps the material and information transferring effectively with the outside of the organism, which ensures its energy conversion efficiency far beyond the traditional manual energy device. Therefore, inspired by living systems, much effort has been directed toward building the functional unit with nanometer multistage, multiple scale, asymmetric structure, and so on, which can greatly enhance the conversion efficiency helping us to solve the global energy shortage (as shown in the Figure).
INFORMATION:
This research project was partially supported by a grant from the National Natural Science Foundation of China, a National Research Fund for Fundamental Key Projects from Department of Science and Technology of China and a Centre of Molecular Science, Chinese Academy of Sciences. It is an important breakthrough in the recent history of development and application of confined water. The researchers suggested that their work needs to be applied to real world applications in water collection and energy conversion system and the confined water used other field should be further studied.
See the article:
Liping Wen and Lei Jiang. Construction of biomimetic smart nanochannels for confined water. National Science Review, 2014Vol. 1(1):144-156
http://nsr.oxfordjournals.org/content/early/2013/11/21/nsr.nwt001.short?rss=1
Smart gating nanochannels for confined water developed by CAS researchers
2014-06-25
ELSE PRESS RELEASES FROM THIS DATE:
Recent progress in whole-lifecycle software architecture modeling
2014-06-25
The gradually increasing complexity of user requirements and runtime environments of software demands software to be of more capabilities and thus become more complex than ever. In the past several decades, there was a trend that the scale of software has been increasing continuously. Nowadays, there are tens or even hundreds of million lines of code in a large scale software system. For example, the Windows operating system scales from 15 million lines of code in 1995 to 60 million lines of code in 2007; in 2011, the scale of software in BMW 7 Series reaches 200 million ...
Street football boosts fitness and health in socially deprived men
2014-06-25
Research carried out by the Copenhagen Centre for Team Sport and Health in Denmark shows that street football (soccer) improves fitness and multiple health markers in homeless men. After only 12 weeks, the participants had better postural balance and higher muscle mass and bone mineralization, along with lower fat percentage and LDL cholesterol and higher aerobic fitness and exercise capacity.
Sixteen original scientific articles about the health effects of football were published on June 19 in the Scandinavian Journal of Medicine & Science in Sports. One of these articles ...
Evidence of the big fix?
2014-06-25
There are many open questions that the Standard Model cannot answer. One of them is the smallness of the Higgs expectation value vh compared with the Planck scale. In their latest work, Dr Yuta Hamada, Dr Hikaru Kawai and Dr Kiyoharu Kawana at Kyoto University, consider the radiation S of the universe at the late stage as a function of vh, and they show that S reaches its maximum around the observed value vh = 246 GeV.
"If we demand that S should be maximized, this conclusion can be the explanation to the above question. The main contribution to S comes from the decay ...
Master regulator of key cancer gene found, offers new drug target
2014-06-25
MINNEAPOLIS/ST. PAUL (June 23, 2014) – A key cancer-causing gene, responsible for up to 20 percent of cancers, may have a weak spot in its armor, according to new research from the Masonic Cancer Center, University of Minnesota.
The partnership of MYC, a gene long linked to cancer, and a non-coding RNA, PVT1, could be the key to understanding how MYC fuels cancer cells. The research is published in the latest issue of the journal Nature.
"We knew MYC amplifications cause cancer. But we also know that MYC does not amplify alone. It often pairs with adjacent chromosomal ...
Brewing yeasts reveal secrets of chromosomal warfare and dysfunction
2014-06-25
SEATTLE –Using two yeasts that have been used to brew tea and beer for centuries, researchers at Fred Hutchinson Cancer Research Center have revealed how reproductive barriers might rapidly arise to create species boundaries. Schizosaccharomyces pombe has been used to brew beer in Africa, whereas its close relative S. kombucha is a component of kombucha tea commonly found in health-food stores.
A team of researchers led by Dr. Sarah Zanders of the Basic Sciences Division at Fred Hutch, has uncovered why hybrids between these yeasts (commonly referred to as fission yeasts) ...
3-D computer model may help refine target for deep brain stimulation therapy for dystonia
2014-06-25
LOS ANGELES (June 24, 2014) – Although deep brain stimulation can be an effective therapy for dystonia – a potentially crippling movement disorder – the treatment isn't always effective, or benefits may not be immediate. Precise placement of DBS electrodes is one of several factors that can affect results, but few studies have attempted to identify the "sweet spot," where electrode placement yields the best results.
Researchers led by investigators at Cedars-Sinai, using a complex set of data from records and imaging scans of patients who have undergone successful DBS ...
First comprehensive pediatric concussion guidelines, available now
2014-06-25
Ottawa/Toronto, CANADA – June 25, 2014 – Pediatric emergency medicine researchers at the Children's Hospital of Eastern Ontario (CHEO) together with the Ontario Neurotrauma Foundation (ONF) today launch the first comprehensive pediatric concussion guidelines.
"There have been recommendations and policies on concussion available in the past, but they tend to have focused on sports-related injury and not on children and youth," said Dr. Roger Zemek, project leader, scientist at CHEO, and Assistant Professor of Pediatrics and Emergency Medicine at the University of Ottawa. ...
Researchers treat incarceration as a disease epidemic, discover small changes help
2014-06-25
The incarceration rate has nearly quadrupled since the U.S. declared a war on drugs, researchers say. Along with that, racial disparities abound. Incarceration rates for black Americans are more than six times higher than those for white Americans, according to the U.S. Bureau of Justice Statistics.
To explain these growing racial disparities, researchers at Virginia Tech are using the same modeling techniques used for infectious disease outbreaks to take on the mass incarceration problem.
By treating incarceration as an infectious disease, the scientists demonstrated ...
Resolving apparent inconsistencies in optimality principles for flow processes in geosystems
2014-06-25
Optimality principles have been used, in a holistic approach, to describe flow processes in several important geosystems. Optimality principles refer to the state of a physical system that is controlled by an optimal condition subject to physical and/or resource constraints.
While significant successes have been achieved in applying them, some principles appear to contradict each other.
For example, scientists have found that the formation of channel networks in a river basin follows the minimization of energy expenditure (MEE) rate, while the Earth-atmosphere system ...
Net energy analysis should become a standard policy tool, Stanford scientists say
2014-06-25
Policymakers should conduct "net energy analyses" when evaluating the long-term sustainability of energy technologies, according to new Stanford University research.
Net energy analysis provides a quantitative way to compare the amount of energy a technology produces over its lifetime with the energy required to build and maintain it. The technique can complement conventional energy planning, which often focuses on minimizing the financial cost of energy production, say Stanford researchers.
"The clearest answer to 'why is net energy important?' is that net energy, ...