(Press-News.org) Richland, Wash. -- When nuclear fuel gets recycled, the process releases radioactive krypton and xenon gases. Naturally occurring uranium in rock contaminates basements with the related gas radon. A new porous material called CC3 effectively traps these gases, and research appearing July 20 in Nature Materials shows how: by breathing enough to let the gases in but not out.
The CC3 material could be helpful in removing unwanted or hazardous radioactive elements from nuclear fuel or air in buildings and also in recycling useful elements from the nuclear fuel cycle. CC3 is much more selective in trapping these gases compared to other experimental materials. Also, CC3 will likely use less energy to recover elements than conventional treatments, according to the authors.
The team made up of scientists at the University of Liverpool in the U.K., the Department of Energy's Pacific Northwest National Laboratory, Newcastle University in the U.K., and Aix-Marseille Universite in France performed simulations and laboratory experiments to determine how -- and how well -- CC3 might separate these gases from exhaust or waste.
"Xenon, krypton and radon are noble gases, which are chemically inert. That makes it difficult to find materials that can trap them," said coauthor Praveen Thallapally of PNNL. "So we were happily surprised at how easily CC3 removed them from the gas stream."
Noble gases are rare in the atmosphere but some such as radon come in radioactive forms and can contribute to cancer. Others such as xenon are useful industrial gases in commercial lighting, medical imaging and anesthesia.
The conventional way to remove xenon from the air or recover it from nuclear fuel involves cooling the air far below where water freezes. Such cryogenic separations are energy intensive and expensive. Researchers have been exploring materials called metal-organic frameworks, also known as MOFs, that could potentially trap xenon and krypton without having to use cryogenics. Although a leading MOF could remove xenon at very low concentrations and at ambient temperatures admirably, researchers wanted to find a material that performed better.
Thallapally's collaborator Andrew Cooper at the University of Liverpool and others had been researching materials called porous organic cages, whose molecular structures are made up of repeating units that form 3-D cages. Cages built from a molecule called CC3 are the right size to hold about three atoms of xenon, krypton or radon.
To test whether CC3 might be useful here, the team simulated on a computer CC3 interacting with atoms of xenon and other noble gases. The molecular structure of CC3 naturally expands and contracts. The researchers found this breathing created a hole in the cage that grew to 4.5 angstroms wide and shrunk to 3.6 angstroms. One atom of xenon is 4.1 angstroms wide, suggesting it could fit within the window if the cage opens long enough. (Krypton and radon are 3.69 angstroms and 4.17 angstroms wide, respectively, and it takes 10 million angstroms to span a millimeter.)
The computer simulations revealed that CC3 opens its windows big enough for xenon about 7 percent of the time, but that is enough for xenon to hop in. In addition, xenon has a higher likelihood of hopping in than hopping out, essentially trapping the noble gas inside.
The team then tested how well CC3 could pull low concentrations of xenon and krypton out of air, a mix of gases that included oxygen, argon, carbon dioxide and nitrogen. With xenon at 400 parts per million and krypton at 40 parts per million, the researchers sent the mix through a sample of CC3 and measured how long it took for the gases to come out the other side.
Oxygen, nitrogen, argon and carbon dioxide -- abundant components of air -- traveled through the CC3 and continued to be measured for the experiment's full 45 minute span. Xenon however stayed within the CC3 for 15 minutes, showing that CC3 could separate xenon from air.
In addition, CC3 trapped twice as much xenon as the leading MOF material. It also caught xenon 20 times more often than it caught krypton, a characteristic known as selectivity. The leading MOF only preferred xenon 7 times as much. These experiments indicated improved performance in two important characteristics of such a material, capacity and selectivity.
"We know that CC3 does this but we're not sure why. Once we understand why CC3 traps the noble gases so easily, we can improve on it," said Thallapally.
To explore whether MOFs and porous organic cages offer economic advantages, the researchers estimated the cost compared to cryogenic separations and determined they would likely be less expensive.
"Because these materials function well at ambient or close to ambient temperatures, the processes based on them are less energy intensive to use," said PNNL's Denis Strachan.
The material might also find use in pharmaceuticals. Most molecules come in right- and left-handed forms and often only one form works in people. In additional experiments, Cooper and colleagues in the U.K. tested CC3's ability to distinguish and separate left- and right-handed versions of an alcohol. After separating left- and right-handed forms of CC3, the team showed in biochemical experiments that each form selectively trapped only one form of the alcohol.
INFORMATION:
This work was supported by the Department of Energy Office of Nuclear Energy.
Reference
Linjiang Chen, Paul S. Reiss, Samantha Y. Chong, Daniel Holden, Kim E. Jelfs, Tom Hasell, Marc A. Little, Adam Kewley, Michael E. Briggs, Andrew Stephenson, K. Mark Thomas, Jayne A. Armstrong, Jon Bell, Jose Busto, Raymond Noel, Jian Liu, Denis M. Strachan, Praveen K. Thallapally and Andrew I. Cooper, Separation of rare gases and chiral molecules by selective binding in porous organic cages, Nature Materials, July 20, 2015, doi: 10.1038/nmat4035. (http://www.nature.com/nmat/index.html)
Interdisciplinary teams at Pacific Northwest National Laboratory address many of America's most pressing issues in energy, the environment and national security through advances in basic and applied science. PNNL employs 4,500 staff, has an annual budget of nearly $1 billion, and has been managed for the U.S. Department of Energy by Ohio-based Battelle since the laboratory's inception in 1965. For more, visit the PNNL's News Center, or follow PNNL on Facebook, LinkedIn and Twitter. The Department of Energy's Office of Science is the single largest supporter of basic research in the physical sciences in the United States and is working to address some of the most pressing challenges of our time.
A noble gas cage
New material traps gases from nuclear fuel better and uses less energy than currently available options
2014-07-20
ELSE PRESS RELEASES FROM THIS DATE:
New method for extracting radioactive elements from air and water
2014-07-20
LIVERPOOL, UK – 20 July 2014: Scientists at the University of Liverpool have successfully tested a material that can extract atoms of rare or dangerous elements such as radon from the air.
Gases such as radon, xenon and krypton all occur naturally in the air but in minute quantities – typically less than one part per million. As a result they are expensive to extract for use in industries such as lighting or medicine and, in the case of radon, the gas can accumulate in buildings. In the US alone, radon accounts for around 21,000 lung cancer deaths a year.
Previous ...
Singapore scientists discover genetic cause of common breast tumours in women
2014-07-20
Singapore, 21 July 2014 – A multi-disciplinary team of scientists from the National Cancer Centre Singapore, Duke-NUS Graduate Medical School Singapore, and Singapore General Hospital have made a seminal breakthrough in understanding the molecular basis of fibroadenoma, one of the most common breast tumours diagnosed in women. The team, led by Professors Teh Bin Tean, Patrick Tan, Tan Puay Hoon and Steve Rozen, used advanced DNA sequencing technologies to identify a critical gene called MED12 that was repeatedly disrupted in nearly 60% of fibroadenoma cases. Their findings ...
New technique maps life's effects on our DNA
2014-07-20
Researchers at the BBSRC-funded Babraham Institute, in collaboration with the Wellcome Trust Sanger Institute Single Cell Genomics Centre, have developed a powerful new single-cell technique to help investigate how the environment affects our development and the traits we inherit from our parents. The technique can be used to map all of the 'epigenetic marks' on the DNA within a single cell. This single-cell approach will boost understanding of embryonic development, could enhance clinical applications like cancer therapy and fertility treatments, and has the potential ...
CU, Old Dominion team finds sea level rise in western tropical Pacific anthropogenic
2014-07-20
A new study led by Old Dominion University and the University of Colorado Boulder indicates sea levels likely will continue to rise in the tropical Pacific Ocean off the coasts of the Philippines and northeastern Australia as humans continue to alter the climate.
The study authors combined past sea level data gathered from both satellite altimeters and traditional tide gauges as part of the study. The goal was to find out how much a naturally occurring climate phenomenon called the Pacific Decadal Oscillation, or PDO, influences sea rise patterns in the Pacific, said ...
Common gene variants account for most of the genetic risk for autism
2014-07-20
Nearly 60 percent of the risk of developing autism is genetic and most of that risk is caused by inherited variant genes that are common in the population and present in individuals without the disorder, according to a study led by researchers at the Icahn School of Medicine at Mount Sinai and published in the July 20 edition of Nature Genetics.
"We show very clearly that inherited common variants comprise the bulk of the risk that sets up susceptibility to autism," says Joseph D. Buxbaum, PhD, the study's lead investigator and Director of the Seaver Autism Center for ...
Tiny laser sensor heightens bomb detection sensitivity
2014-07-20
Berkeley — New technology under development at the University of California, Berkeley, could soon give bomb-sniffing dogs some serious competition.
A team of researchers led by Xiang Zhang, UC Berkeley professor of mechanical engineering, has found a way to dramatically increase the sensitivity of a light-based plasmon sensor to detect incredibly minute concentrations of explosives. They noted that it could potentially be used to sniff out a hard-to-detect explosive popular among terrorists.
Their findings are to be published Sunday, July 20, in the advanced online ...
Size and age of plants impact their productivity more than climate, study shows
2014-07-20
The size and age of plants has more of an impact on their productivity than temperature and precipitation, according to a landmark study by University of Arizona researchers.
UA professor Brian Enquist and postdoctoral researcher Sean Michaletz, along with collaborators Dongliang Cheng from Fujian Normal University in China and Drew Kerkhoff from Kenyon College in Gambier, Ohio, have combined a new mathematical theory with data from more than 1,000 forests across the world to show that climate has a relatively minor direct effect on net primary productivity, or the amount ...
Mixing it up: Study provides new insight into Southern Ocean behaviour
2014-07-20
A new study has found that turbulent mixing in the deep waters of the Southern Ocean, which has a profound effect on global ocean circulation and climate, varies with the strength of surface eddies – the ocean equivalent of storms in the atmosphere – and possibly also wind speeds.
It is the first study to link eddies at the surface to deep mixing on timescales of months to decades.
This new insight into how the Southern Ocean behaves will allow scientists to build computer models that can better predict how our climate is going to change in the future.
The findings ...
New HIV prevention recommendations combine biomedical and behavioral approaches
2014-07-19
In an innovative approach to HIV prevention, an interdisciplinary group of experts has come together for the first time to lay out a framework of best practices to optimize the role of the clinician in achieving an AIDS-free generation. The guidelines, which will be published online in the Journal of the American Medical Association (JAMA), integrate both cutting-edge biomedical advances and evidence-based behavioral interventions for the care of people living with HIV or at high risk for HIV infection.
The recommendations, developed by an expert volunteer panel assembled ...
Drug that reduces abdominal fat in HIV patients also may reduce fat in liver
2014-07-19
The only drug to receive FDA approval for reduction of the abdominal fat deposits that develop in some patients receiving antiviral therapy for HIV infection may also reduce the incidence of fatty liver disease in such patients. In a paper that will appear in the July 23/28 issue of JAMA – a theme issue on HIV/AIDS receiving early online release to coincide with the International AIDS Conference – Massachusetts General Hospital (MGH) investigators report that daily injections of tesamorelin significantly reduced fat in the liver without affecting glucose metabolism.
"Tesamorelin's ...
LAST 30 PRESS RELEASES:
Red light linked to lowered risk of blood clots
Menarini Group and Insilico Medicine enter a second exclusive global license agreement for an AI discovered preclinical asset targeting high unmet needs in oncology
Climate fee on food could effectively cut greenhouse gas emissions in agriculture while ensuring a social balance
Harnessing microwave flow reaction to convert biomass into useful sugars
Unveiling the secrets of bone strength: the role of biglycan and decorin
Revealing the “true colors” of a single-atom layer of metal alloys
New data on atmosphere from Earth to the edge of space
Self-destructing vaccine offers enhanced protection against tuberculosis in monkeys
Feeding your good gut bacteria through fiber in diet may boost body against infections
Sustainable building components create a good indoor climate
High levels of disordered eating among young people linked to brain differences
Hydrogen peroxide and the mystery of fruit ripening: ‘Signal messengers’ in plants
T cells’ capability to fully prevent acute viral infections opens new avenues for vaccine development
Study suggests that magma composition drives volcanic tremor
Sea surface temperatures and deeper water temperatures reached a new record high in 2024
Connecting through culture: Understanding its relevance in intercultural lingua franca communication
Men more than three times as likely to die from a brain injury, new US study shows
Tongue cancer organoids reveal secrets of chemotherapy resistance
Applications, limitations, and prospects of different muscle atrophy models in sarcopenia and cachexia research
FIFAWC: A dataset with detailed annotation and rich semantics for group activity recognition
Transfer learning-enhanced physics-informed neural network (TLE-PINN): A breakthrough in melt pool prediction for laser melting
Holistic integrative medicine declaration
Hidden transport pathways in graphene confirmed, paving the way for next-generation device innovation
New Neurology® Open Access journal announced
Gaza: 64,000 deaths due to violence between October 2023 and June 2024, analysis suggests
Study by Sylvester, collaborators highlights global trends in risk factors linked to lung cancer deaths
Oil extraction might have triggered small earthquakes in Surrey
Launch of world’s most significant protein study set to usher in new understanding for medicine
New study from Chapman University reveals rapid return of water from ground to atmosphere through plants
World's darkest and clearest skies at risk from industrial megaproject
[Press-News.org] A noble gas cageNew material traps gases from nuclear fuel better and uses less energy than currently available options