PRESS-NEWS.org - Press Release Distribution
PRESS RELEASES DISTRIBUTION

MIPT and RAS scientists made an important step towards creating medical nanorobots

Researchers at Moscow Institute of Physics and Technology and Russian Academy of Sciences made an important step towards creating medical nanorobots

MIPT and RAS scientists made an important step towards creating medical nanorobots
2014-08-19
(Press-News.org) Researchers from the Institute of General Physics of the Russian Academy of Sciences, the Institute of Bioorganic Chemistry of the Russian Academy of Sciences and MIPT have made an important step towards creating medical nanorobots. They discovered a way of enabling nano- and microparticles to produce logical calculations using a variety of biochemical reactions.

Details of their research project are given in the journal Nature Nanotechnology. It is the first experimental publication by an exclusively Russian team in one of the most cited scientific magazines in many years.

The paper draws on the idea of computing using biomolecules. In electronic circuits, for instance, logical connectives use current or voltage (if there is voltage, the result is 1, if there is none, it's 0).In biochemical systems, the result can a given substance.

For example, modern bioengineering techniques allow for making a cell illuminate with different colors or even programming it to die, linking the initiation of apoptosis to the result of binary operations.

Many scientists believe logical operations inside cells or in artificial biomolecular systems to be a way of controlling biological processes and creating full-fledged micro-and nano-robots, which can, for example, deliver drugs on schedule to those tissues where they are needed.

Calculations using biomolecules inside cells, a.k.a. biocomputing, are a very promising and rapidly developing branch of science, according to the leading author of the study, Maxim Nikitin, a 2010 graduate of MIPT's Department of Biological and Medical Physics. Biocomputing uses natural cellular mechanisms. It is far more difficult, however, to do calculations outside cells, where there are no natural structures that could help carry out calculations. The new study focuses specifically on extracellular biocomputing.

The study paves the way for a number of biomedical technologies and differs significantly from previous works in biocomputing, which focus on both the outside and inside of cells. Scientists from across the globe have been researching binary operations in DNA, RNA and proteins for over a decade now, but Maxim Nikitin was the first to propose and experimentally confirm a way to implement all logical operations using nano-and microparticles, which is important not only for computing as such, but also for controlling the biomedical behavior of nanoparticles. In the future, this will allow for selective binding to a target cell and for creating a new platform to analyze blood and other biological materials.

The prefix "nano" in this case is not a fad or a mere formality. A decrease in particle size sometimes leads to drastic changes in the physical and chemical properties of a substance. The smaller the size, the greater the reactivity; very small semiconductor particles, for example, may produce fluorescent light. The new research project used nanoparticles (i.e. particles of 100 nm) and microparticles (3000 nm or 3 micrometers).

Nanoparticles were coated with a special layer, which "disintegrated" in different ways when exposed to different combinations of signals. A signal here is the interaction of nanoparticles with a particular substance. For example, to implement the logical operation "AND" a spherical nanoparticle was coated with a layer of molecules, which held a layer of spheres of a smaller diameter around it. The molecules holding the outer shell were of two types, each type reacting only to a particular signal; when in contact with two different substances small spheres separated from the surface of a nanoparticleof a larger diameter. Removing the outer layer exposed the active parts of the inner particle, and it was then able to interact with its target. Thus, the team obtained one signal in response to two signals.

For bonding nanoparticles, the researchers selected antibodies. This also distinguishes their project from a number of previous studies in biocomputing, which used DNA or RNA for logical operations. These natural proteins of the immune system have a small active region, which responds only to certain molecules; the body uses the high selectivity of antibodies to recognize and neutralize bacteria and other pathogens.

Making sure that the combination of different types of nanoparticles and antibodies makes it possible to implement various kinds of logical operations, the researchers showed that cancer cells can be specifically targeted as well. The team obtained not simply nanoparticles that can bind to certain types of cells, but particles that look for target cells when both of two different conditions are met, or when two different molecules are present or absent. This additional control may come in handy for more accurate destruction of cancer cells with minimal impact on healthy tissues and organs.

Maxim Nikitin said that although this is just as mall step towards creating efficient nanobiorobots, this area of science is very interesting and opens up great vistas for further research, if one draws an analogy between the first works in the creation of nanobiocomputers and the creation of the first diodes and transistors, which resulted in the rapid development of computer technology.

INFORMATION: The new work was published on the website of the journal Nature Nanotechnology, one of the most authoritative scientific publications in the world. It is considered the leading publication by Impact Factor in nanoscience and nanotechnology.

Maxim Nikitin developed the approach and the scheme of experiments and carried them out with Victoria Shipunova (a post-graduate student at the Institute of Bioorganic Chemistry of the Russian Academy of Sciences and a 2013 graduate of MIPT's Department of Biological and Medical Physics). Sergei Deyev (the Institute of Bioorganic Chemistry and the University of Nizhny Novgorod, a graduate of Moscow State University), Pyotr Nikitin (Institute of General Physics of the Russian Academy of Sciences, a1979 graduate of MIPT's Department of Problems of Physics and Energetics) and Maxim Nikitin processed the results of the experiments and wrote the article

[Attachments] See images for this press release:
MIPT and RAS scientists made an important step towards creating medical nanorobots

ELSE PRESS RELEASES FROM THIS DATE:

Opioid users breathe easier with novel drug to treat respiratory depression

2014-08-19
Chicago – August 19, 2014 – People taking prescription opioids to treat moderate to severe pain may be able to breathe a little easier, literally. A study published in the September issue of Anesthesiology, the official medical journal of the American Society of Anesthesiologists® (ASA®), found that a new therapeutic drug, GAL-021, may reverse or prevent respiratory depression, or inadequate breathing, in patients taking opioid medication without compromising pain relief or increasing sedation. "Although opioids such as oxycodone, methadone and fentanyl are commonly ...

Taking a stand: Balancing the BENEFITS and RISKS of physical activity in children

2014-08-19
This news release is available in French. Taking a Stand: balancing the BENEFITS and RISKS of physical activity in children Today the Canadian Society of Exercise Physiology took a stand on the promotion of childhood physical activity and published their position and recommendations in the journal Applied Physiology, Nutrition, and Metabolism (APNM). This position stand provides an important overview of knowledge in the area of risk of physical activity for children and suggests both practical guidelines and a research agenda. Uniquely, this position stand addresses ...

Researchers block plant hormone

Researchers block plant hormone
2014-08-19
This news release is available in German. Researchers trying to get new information about the metabolism of plants can switch off individual genes and study the resulting changes. However, Erich Kombrink from the Max Planck Institute for Plant Breeding Research in Cologne and Markus Kaiser from the University of Duisburg-Essen adopt a different approach. They identify small molecules that block specific components of the metabolic process like brake pads and prevent the downstream reactions. In their search for these molecules, they use a biological selection ...

Exporting US coal to Asia could drop emissions 21 percent

2014-08-19
DURHAM, N.C. -- Under the right scenario, exporting U.S. coal to power plants in South Korea could lead to a 21 percent drop in greenhouse gas emissions compared to burning the fossil fuel at plants in the United States, according to a new Duke University-led study. "Despite the large amount of emissions produced by shipping the coal such a long distance, our analysis shows that the total emissions would drop because of the superior energy efficiency of South Korea's newer coal-fired power plants," said Dalia Patiño-Echeverri, assistant professor of energy systems and ...

The difficult question of Clostridium difficile

The difficult question of Clostridium difficile
2014-08-19
The bacterium Clostridium difficile causes antibiotic-related diarrhoea and is a growing problem in the hospital environment and elsewhere in the community. Understanding how the microbe colonises the human gut when other "healthy" microbes have been destroyed during a course of antibiotics might lead to new ways to control infection. An important clue was reported recently in an open access article published in the journal Acta Crystallographica Section D Biological Crystallography. [Bradshaw et al. (2014). Acta Cryst. D70, 1983-1993; doi:10.1107/S1399004714009997] Ravi ...

Zebrafish help to unravel Alzheimer's disease

2014-08-19
New fundamental knowledge about the regulation of stem cells in the nerve tissue of zebrafish embryos results in surprising insights into neurodegenerative disease processes in the human brain. A new study by scientists at VIB and KU Leuven identifies the molecules responsible for this process. Zebrafish as a model The zebrafish is a small fish measuring 3 to 5 cm in length, with dark stripes along the length of its body. They are originally from India, but also a popular aquarium fish. Zebrafish have several unusual characteristics that make them popular for scientific ...

Why global warming is taking a break

2014-08-19
Global warming is currently taking a break: whereas global temperatures rose drastically into the late 1990s, the global average temperature has risen only slightly since 1998 – surprising, considering scientific climate models predicted considerable warming due to rising greenhouse gas emissions. Climate sceptics used this apparent contradiction to question climate change per se – or at least the harm potential caused by greenhouse gases – as well as the validity of the climate models. Meanwhile, the majority of climate researchers continued to emphasise that the short-term ...

Has the puzzle of rapid climate change in the last ice age been solved?

Has the puzzle of rapid climate change in the last ice age been solved?
2014-08-19
During the last ice age a large part of North America was covered with a massive ice sheet up to 3km thick. The water stored in this ice sheet is part of the reason why the sea level was then about 120 meters lower than today. Young Chinese scientist Xu Zhang, lead author of the study who undertook his PhD at the Alfred Wegener Institute, explains. "The rapid climate changes known in the scientific world as Dansgaard-Oeschger events were limited to a period of time from 110,000 to 23,000 years before present. The abrupt climate changes did not take place at the extreme ...

How steroid hormones enable plants to grow

How steroid hormones enable plants to grow
2014-08-19
Plants are superior to humans and animals in a number of ways. They have an impressive ability to regenerate, which enables them to regrow entire organs. After being struck by lightning, for example, a tree can grow back its entire crown. But there is one major downside to life as a plant: They are quite literally rooted to the habitats in which they live and therefore completely at the mercy of the elements. In response to this dilemma, plants have developed mechanisms that enable them to rapidly adapt their growth and development to changes. Plant hormones are important ...

First indirect evidence of so-far undetected strange baryons

First indirect evidence of so-far undetected strange baryons
2014-08-19
UPTON, NY-New supercomputing calculations provide the first evidence that particles predicted by the theory of quark-gluon interactions but never before observed are being produced in heavy-ion collisions at the Relativistic Heavy Ion Collider (RHIC), a facility that is dedicated to studying nuclear physics. These heavy strange baryons, containing at least one strange quark, still cannot be observed directly, but instead make their presence known by lowering the temperature at which other strange baryons "freeze out" from the quark-gluon plasma (QGP) discovered and created ...

LAST 30 PRESS RELEASES:

Survey of US parents highlights need for more awareness about newborn screening, cystic fibrosis and what to do if results are abnormal

Outcomes of children admitted to a pediatric observation unit with a psychiatric comanagement model

SCAI announces 2024-25 SCAI-WIN CHIP Fellowship Recipient

SCAI’s 30 in Their 30’s Award recognizes the contributions of early career interventional cardiologists

SCAI Emerging Leaders Mentorship Program welcomes a new class of interventional cardiology leaders

SCAI bestows highest designation ranking to leading interventional cardiologists

SCAI names James B. Hermiller, MD, MSCAI, President for 2024-25

Racial and ethnic disparities in all-cause and cause-specific mortality among US youth

Ready to launch program introduces medical students to interventional cardiology field

Variety in building block softness makes for softer amorphous materials

Tennis greats Chris Evert and Martina Navratilova honored at A Conversation With a Living Legend®

Seismic waves used to track LA’s groundwater recharge after record wet winter

When injecting pure spin into chiral materials, direction matters

New quantum sensing scheme could lead to enhanced high-precision nanoscopic techniques

New MSU research: Are carbon-capture models effective?

One vaccine, many cancers

nTIDE April 2024 Jobs Report: Post-pandemic gains seen in employment for people with disabilities appear to continue

Exploring oncogenic driver molecular alterations in Hispanic/Latin American cancer patients

Hungry, hungry white dwarfs: solving the puzzle of stellar metal pollution

New study reveals how teens thrive online: factors that shape digital success revealed

U of T researchers discover compounds produced by gut bacteria that can treat inflammation

Aligned peptide ‘noodles’ could enable lab-grown biological tissues

Law fails victims of financial abuse from their partner, research warns

Mental health first-aid training may enhance mental health support in prison settings

Tweaking isotopes sheds light on promising approach to engineer semiconductors

How E. coli get the power to cause urinary tract infections

Quantifying U.S. health impacts from gas stoves

Physics confirms that the enemy of your enemy is, indeed, your friend

Stony coral tissue loss disease is shifting the ecological balance of Caribbean reefs

Newly discovered mechanism of T-cell control can interfere with cancer immunotherapies

[Press-News.org] MIPT and RAS scientists made an important step towards creating medical nanorobots
Researchers at Moscow Institute of Physics and Technology and Russian Academy of Sciences made an important step towards creating medical nanorobots