(Press-News.org) CINCINNATI – An international research team reports in Nature Medicine a novel molecular pathway that causes an aggressive form of medulloblastoma, and suggests repurposing an anti-depressant medication to target the new pathway may help combat one of the most common brain cancers in children.
The multi-institutional group, led by scientists at Cancer and Blood Diseases Institute (CBDI) at Cincinnati Children's Hospital Medical Center, publish their results in the journal's online edition on Aug. 24. The researchers suggest their laboratory findings in mouse models of the disease could lead to a more targeted and effective molecular therapy that would also reduce the harmful side effects of current treatments, which include chemotherapy, radiation or surgery.
"Although current treatments improve survival rates, patients suffer severe side effects and relapse tumors carry mutations that resist treatment," said lead investigator Q. Richard Lu, PhD, scientific director of the Brain Tumor Center, part of the CBDI at Cincinnati Children's. "This underscores an urgent need for alternative targeted therapies, and we have identified a potent tumor suppressor that could help a subset of patients with an aggressive form of medulloblastoma."
Using genetically-engineered mice to model human medulloblastoma, the authors identified a gene called GNAS that encodes a protein called Gsa. Gsa kicks off a signaling cascade that researchers found suppresses the initiation of an aggressive form of medulloblastoma driven by a protein called Sonic hedgehog – considered one of the most important molecules in tissue formation and development.
The scientists used an anti-depressant medication called Rolipram – approved for behavioral therapy for use in Europe and Japan – to treat mice that were engineered not to express the GNAS gene. Lack of GNAS allowed aggressive formation of medulloblastoma tumors in neural progenitor cells of the GNAS mutant mice.
Rolipram treatment in the mice elevated levels of a molecule called cAMP, which restored the GNAS-Gsa pathway's tumor suppression function. This caused the tumors to shrink and subside. The study also suggests that elevating cAMP levels in cells enhances the potency of Sonic hedgehog inhibitors, currently being tested in clinical trials to fight tumor growth.
The scientists stressed that a significant amount of additional research is needed before their findings could become directly relevant to clinical treatment. The authors also caution that the effect of raising cAMP levels may depend on the type of cancer, and that laboratory results in mice do not always translate uniformly to humans.
INFORMATION:
Collaborating on the study with Dr. Lu was first author, Xuelian He (MD, a postdoctoral fellow), of the CBDI at Cincinnati Children's and the West China Second Hospital, Sichuan University, in Chengdu, China.
Other collaborating institutions include: The Hospital for Sick Children, University of Toronto, Toronto; Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas; Department of Pathology, Yonsei University College of Medicine, Seoul, Republic of Korea; the German Cancer Research Center, Heidelberg, Germany; the National Institute of Diabetes and Digestive and Kidney Diseases (NIH); Department of Neurology, Children's Hospital, Dana-Farber Cancer Institute, Harvard Medical School, Boston; St. Jude Children's Research Hospital, Memphis; departments of Pediatrics, Anatomy and Neurobiology, Washington University School of Medicine, St Louis; Tumor Development Program, Sanford-Burnham Medical Research Institute, La Jolla, Calif.
Funding support came in part from the National Institutes of Health (R01NS078092, R01NS075243) and the Canadian Institutes of Health Research.
About Cincinnati Children's:
Cincinnati Children's Hospital Medical Center ranks third in the nation among all Honor Roll hospitals in U.S. News and World Report's 2014 Best Children's Hospitals. It is also ranked in the top 10 for all 10 pediatric specialties. Cincinnati Children's, a non-profit organization, is one of the top three recipients of pediatric research grants from the National Institutes of Health, and a research and teaching affiliate of the University of Cincinnati College of Medicine. The medical center is internationally recognized for improving child health and transforming delivery of care through fully integrated, globally recognized research, education and innovation. Additional information can be found at http://www.cincinnatichildrens.org. Connect on the Cincinnati Children's blog, via Facebook and on Twitter.
Study suggests repurposing anti-depressant medication to target medulloblastoma
2014-08-24
ELSE PRESS RELEASES FROM THIS DATE:
Evolutionary history of honeybees revealed by genomics
2014-08-24
In a study published in Nature Genetics, researchers from Uppsala University present the first global analysis of genome variation in honeybees. The findings show a surprisingly high level of genetic diversity in honeybees, and indicate that the species most probably originates from Asia, and not from Africa as previously thought.
The honeybee (Apis mellifera) is of crucial importance for humanity. One third of our food is dependent on the pollination of fruits, nuts and vegetables by bees and other insects. Extensive losses of honeybee colonies in recent years are a ...
Signatures of selection inscribed on poplar genomes
2014-08-24
One aspect of the climate change models researchers have been developing looks at how plant ranges might shift, and how factors such as temperature, water availability, and light levels might come into play. Forests creeping steadily north and becoming established in the thawing Arctic is just one of the predicted effects of rising global temperatures.
A recent study published online August 24, 2014 in Nature Genetics offers a more in-depth, population-based approach to identifying such mechanisms for adaptation, and describes a method that could be harnessed for developing ...
Mimicking natural evolution with 'promiscuous reactions' to improve the diversity of drugs
2014-08-24
A revolutionary new scientific method developed at the University of Leeds will improve the diversity of 'biologically active molecules', such as antibiotics and anti-cancer agents.
The researchers, who report their findings online today in the journal Nature Chemistry, took their inspiration from evolution in nature. The research may uncover new pharmaceutical drugs that traditional methods would never have found.
"Nature produces some amazing structures with really interesting biological activity, but the plant or animal did not design them. Instead the organisms ...
Study: Cutting emissions pays for itself
2014-08-24
CAMBRIDGE, Mass-- Lower rates of asthma and other health problems are frequently cited as benefits of policies aimed at cutting carbon emissions from sources like power plants and vehicles, because these policies also lead to reductions in other harmful types of air pollution.
But just how large are the health benefits of cleaner air in comparison to the costs of reducing carbon emissions? MIT researchers looked at three policies achieving the same reductions in the U.S., and found that the savings on health care spending and other costs related to illness can be big ...
Driving brain rhythm makes mice more sensitive to touch
2014-08-24
PROVIDENCE, R.I. [Brown University] — By striking up the right rhythm in the right brain region at the right time, Brown University neuroscientists report in Nature Neuroscience that they managed to endow mice with greater touch sensitivity than other mice, making hard-to-perceive vibrations suddenly more vivid to them.
The findings offer the first direct evidence that "gamma" brainwaves in the cortex affect perception and attention. With only correlations and associations as evidence before, neuroscientists have argued for years about whether gamma has an important role ...
Are you as old as what you eat? Researchers learn how to rejuvenate aging immune cells
2014-08-24
Researchers from UCL (University College London) have demonstrated how an interplay between nutrition, metabolism and immunity is involved in the process of ageing.
The two new studies, supported by the Biotechnology and Biological Sciences Research Council (BBSRC), could help to enhance our immunity to disease through dietary intervention and help make existing immune system therapies more effective.
As we age our immune systems decline. Older people suffer from increased incidence and severity of both infections and cancer. In addition, vaccination becomes less efficient ...
Stanford bioengineers close to brewing opioid painkillers without using opium from poppies
2014-08-24
For centuries poppy plants have been grown to provide opium, the compound from which morphine and other important medicines such as oxycodone are derived.
Now bioengineers at Stanford have hacked the DNA of yeast, reprograming these simple cells to make opioid-based medicines via a sophisticated extension of the basic brewing process that makes beer.
Led by Associate Professor of Bioengineering Christina Smolke, the Stanford team has already spent a decade genetically engineering yeast cells to reproduce the biochemistry of poppies with the ultimate goal of producing ...
'Haven't my neurons seen this before?'
2014-08-24
PITTSBURGH—The world grows increasingly more chaotic year after year, and our brains are constantly bombarded with images. A new study from Center for the Neural Basis of Cognition (CNBC), a joint project between Carnegie Mellon University and the University of Pittsburgh, reveals how neurons in the part of the brain responsible for recognizing objects respond to being shown a barrage of images. The study is published online by Nature Neuroscience.
The CNBC researchers showed animal subjects a rapid succession of images, some that were new, and some that the subjects ...
Neuroscience and big data: How to find simplicity in the brain
2014-08-24
PITTSBURGH—Scientists can now monitor and record the activity of hundreds of neurons concurrently in the brain, and ongoing technology developments promise to increase this number manyfold. However, simply recording the neural activity does not automatically lead to a clearer understanding of how the brain works.
In a new review paper published in Nature Neuroscience, Carnegie Mellon University's Byron M. Yu and Columbia University's John P. Cunningham describe the scientific motivations for studying the activity of many neurons together, along with a class of machine ...
'Just right' plant growth may make river deltas resilient
2014-08-24
BLOOMINGTON, Ind. -- Research by Indiana University geologists suggests that an intermediate amount of vegetation -- not too little and not too much -- is most effective at stabilizing freshwater river deltas.
The study, "Optimum vegetation height and density for inorganic sedimentation in deltaic marshes," was published online Aug. 24 by Nature Geoscience. The findings may help guide restoration of river deltas, such as those near the mouth of the Mississippi River, which are under threat as sea levels rise.
Authors are William Nardin, a postdoctoral fellow in the ...