Sugar substitutes not so super sweet after all
2014-09-04
(Press-News.org) The taste of common sugar substitutes is often described as being much more intense than sugar, but participants in a recent study indicated that these non-nutritive sugar substitutes are no sweeter than the real thing, according to Penn State food scientists.
In the study, participants compared the taste of non-nutritive sweeteners that are often used as low- or no-calorie sugar substitutes with those of nutritive sweeteners, such as sugar, maple syrup and agave nectar. The participants indicated they could perceive the non-nutritive sweeteners -- such as aspartame, marketed as NutraSweet; acesulfameK, often called AceK; and RebA, a compound found in the stevia plant -- at lower concentrations than real sugar, but the intensity of these sensations was no sweeter than sugar and other nutritive sweeteners.
"While you can detect non-nutritive sweeteners at lower levels than sugar, that doesn't really tell us anything about the perceived intensity of that sweetness," said John Hayes, assistant professor, food science and director of the sensory evaluation center.
The assumption that these sweeteners are excessively sweet may be the result of confusing potency and intensity, said Hayes, who worked with Rachel Antenucci, a graduate student in food science.
"In terms of receptor biology, the potency of a substance describes the lowest concentration that activates a taste receptor, but this does not predict the intensity, or magnitude, of the response," said Hayes.
The ability to detect sweetness of non-nutritive sweeteners at low levels, then, is related to their potency, but not their intensity, he added. Sugar, on the other hand, is less potent but causes more intense sensations of sweetness.
"These ingredients are often marketed or described as 'high-intensity' sweeteners, but that's misleading," said Hayes. "Our data confirm other work showing the maximal sweetness of low-cal sweeteners is often much lower than that of table sugar or other natural sweeteners, like maple syrup."
The researchers, whose findings are available online in the International Journal of Obesity, said these sweeteners did not seem to act as supernormal stimuli -- a term first used by Nobel laureate Niko Tingergen to describe exaggerated stimuli that serve as triggers for innate behaviors.
Some psychologists have suggested that supernormal stimuli and the responses they provoke could be a factor in the obesity epidemic, said Hayes.
"We have evolved to like sweetness from before birth, so some people assume so-called 'high intensity' sweeteners hijack or over-stimulate our natural drive to consume sweet foods, causing us to overeat," said Hayes. "However, this view assumes that foods we eat today are more intense than those we would have been exposed to evolutionarily, and our data imply this isn't the case."
Hayes also said the availability of highly desired foods may play a more important role in the obesity epidemic.
The researchers recruited 401 participants to take part in a series of taste tests held at the Sensory Evaluation Center at Penn State. Once the subjects were briefed on the study, they tasted between 12 and 15 separate samples that contained maple syrup, agave nectar and sucrose, as well as various concentrations of aspartame, sucralose, AceK and RebA. Participants indicated that the caloric sweeteners all had higher sweetness ratings than the non-nutritive sweeteners.
INFORMATION:
The participants also indicated that as the concentrations of sucralose, AceK and RebA were increased, the sweetness leveled off and the taste became more bitter.
The National Institutes of Health supported this work.
ELSE PRESS RELEASES FROM THIS DATE:
UCSB researchers develop ultra sensitive biosensor from molybdenite semiconductor
2014-09-04
Move over, graphene. An atomically thin, two-dimensional, ultrasensitive semiconductor material for biosensing developed by researchers at UC Santa Barbara promises to push the boundaries of biosensing technology in many fields, from health care to environmental protection to forensic industries.
Based on molybdenum disulfide or molybdenite (MoS2), the biosensor material — used commonly as a dry lubricant — surpasses graphene's already high sensitivity, offers better scalability and lends itself to high-volume manufacturing. Results of the researchers' study have been ...
A minimally invasive, high-performance intervention for staging lung cancer
2014-09-04
Endoscopic biopsy of lymph nodes between the two lungs (mediastinum) is a sensitive and accurate technique that can replace mediastinal surgery for staging lung cancer in patients with potentially resectable tumours. Such were the conclusions of a prospective controlled trial conducted under Dr. Moishe Liberman, a researcher at the CHUM Research Centre (CRCHUM) and an Associate Professor at the Université de Montréal. Moreover, the study showed that it is not necessary to perform surgery to confirm negative results obtained through the endoscopic approach during the pre-operative ...
Breakthrough study identifies genetic link between the circadian clock and seasonal timing
2014-09-04
Researchers from the University of Leicester have for the first time provided experimental evidence for a genetic link between two major timing mechanisms, the circadian clock and the seasonal timer.
New research from the Tauber laboratory at the University of Leicester, which will be published in the academic journal PLOS Genetics on 4 September, has corroborated previous observations that flies developed under short days become significantly more cold-resistant compared with flies raised in long-days, suggesting that this response can be used to study seasonal photoperiodic ...
The yin and yang of overcoming cocaine addiction
2014-09-04
PITTSBURGH—Yaoying Ma says that biology, by nature, has a yin and a yang—a push and a pull.
Addiction, particularly relapse, she finds, is no exception.
Ma is a research associate in the lab of Yan Dong, assistant professor of neuroscience in the University of Pittsburgh's Kenneth P. Dietrich School of Arts and Sciences. She is the lead author of a paper published online today in the journal Neuron that posits that it may be possible to ramp up an intrinsic anti-addiction response as a means to fight cocaine relapse and keep the wolves of relapse at bay.
This paper ...
A metallic alloy that is tough and ductile at cryogenic temperatures
2014-09-04
A new concept in metallic alloy design – called "high-entropy alloys" - has yielded a multiple-element material that not only tests out as one of the toughest on record, but, unlike most materials, the toughness as well as the strength and ductility of this alloy actually improves at cryogenic temperatures. This multi-element alloy was synthesized and tested through a collaboration of researchers at the U.S. Department of Energy (DOE)'s Lawrence Berkeley and Oak Ridge National Laboratories (Berkeley Lab and ORNL).
"We examined CrMnFeCoNi, a high-entropy alloy that contains ...
Rosetta-Alice spectrograph obtains first far ultraviolet spectra of a cometary surface
2014-09-04
Boulder, Colo. — Sept. 4, 2014 — NASA's Alice ultraviolet (UV) spectrograph aboard the European Space Agency's Rosetta comet orbiter has delivered its first scientific discoveries. Rosetta, in orbit around comet 67P/Churyumov-Gerasimenko, is the first spacecraft to study a comet up close.
As Alice began mapping the comet's surface last month, it made the first far ultraviolet spectra of a cometary surface. From these data, the Alice team discovered that the comet is unusually dark at ultraviolet wavelengths and that the comet's surface — so far — shows no large water-ice ...
Avian influenza virus isolated in harbor seals poses a threat to humans
2014-09-04
(MEMPHIS, Tenn. – September 4, 2014) A study led by St. Jude Children's Research Hospital scientists found the avian influenza A H3N8 virus that killed harbor seals along the New England coast can spread through respiratory droplets and poses a threat to humans. The research appears in the current issue of the scientific journal Nature Communications.
The avian H3N8 virus was isolated by scientists investigating the 2011 deaths of more than 160 harbor seals. Researchers discovered the virus had naturally acquired mutations in a key protein that previous laboratory research ...
2-D or 3-D? That is the question
2014-09-04
The increased visual realism of 3-D films is believed to offer viewers a more vivid and lifelike experience—more thrilling and intense than 2-D because it more closely approximates real life. However, psychology researchers at the University of Utah, among those who use film clips routinely in the lab to study patients' emotional conditions, have found that there is no significant difference between the two formats. The results were published recently in PLOS ONE.
The study aimed to validate the effectiveness of 3-D film, a newer technology, as compared to 2-D film that ...
Team identifies important regulators of immune cell response
2014-09-04
JUPITER, FL, September 4, 2014 - In a collaborative study, scientists from the Florida campus of The Scripps Research Institute (TSRI) and the La Jolla Institute for Allergy and Immunology have developed a more effective method to determine how immune cells called T cells differentiate into specialized types of cells that help eradicate infected cells and assist other immune cells during infection.
The new approach, published recently by the journal Immunity, could help accelerate laboratory research and the development of potential therapeutics, including vaccines. The ...
Knowing how bacteria take out trash could lead to new antibiotics
2014-09-04
AMHERST, Mass. – A collaborative team of scientists including biochemist Peter Chien at the University of Massachusetts Amherst has reconstructed how bacteria tightly control their growth and division, a process known as the cell cycle, by specifically destroying key proteins through regulated protein degradation.
Regulated protein degradation uses specific enzymes called energy dependent proteases to selective destroy certain targets. Because regulated protein degradation is critical for bacterial virulence and invasion, understanding how these proteases function should ...