PRESS-NEWS.org - Press Release Distribution
PRESS RELEASES DISTRIBUTION

Platelet-like particles augment natural blood clotting for treating trauma

Platelet-like particles augment natural blood clotting for treating trauma
2014-09-07
(Press-News.org) A new class of synthetic platelet-like particles could augment natural blood clotting for the emergency treatment of traumatic injuries – and potentially offer doctors a new option for curbing surgical bleeding and addressing certain blood clotting disorders without the need for transfusions of natural platelets.

The clotting particles, which are based on soft and deformable hydrogel materials, are triggered by the same factor that initiates the body's own clotting processes. Testing done in animal models and in a simulated circulatory system suggest that the particles are effective at slowing bleeding and can safely circulate in the bloodstream. The particles have been tested with human blood, but have not undergone clinical trials in humans.

Supported by the National Institutes of Health, the U.S. Department of Defense, and the American Heart Association, the research was reported September 7, 2014, in the journal Nature Materials. Researchers from the Georgia Institute of Technology, Emory University, Children's Healthcare of Atlanta and Arizona State University collaborated on the research.

"When used by emergency medical technicians in the civilian world or by medics in the military, we expect this technology could reduce the number of deaths from excessive bleeding," said Ashley Brown, a research scientist in the Georgia Tech School of Chemistry and Biochemistry and first author of the paper. "If EMTs and medics had particles like these that could be injected and then go specifically to the site of a serious injury, they could help decrease the number of deaths associated with serious injuries."

The bloodstream contains proteins known as fibrinogen that are the precursors for fibrin, the polymer that provides the basic structure for natural blood clots. When they receive the right signals from a protein known as thrombin, these precursors polymerize at the site of the bleeding. The synthetic platelet-like particles use the same trigger, and so are activated only when the body's natural clotting process is initiated.

To create that trigger, the researchers followed a process known as molecular evolution to develop an antibody that could be attached to the hydrogel particles to change their form when they encounter thrombin-activated fibrin. The resulting antibody has a high affinity for the polymerized form of fibrin and a low affinity for the precursor material.

"Fibrin production is on the back end of the clotting process, so we feel that it is a safer place to try to interact with it," said Tom Barker, an associate professor in the Wallace H. Coulter Department of Biomedical Engineering at Georgia Tech and Emory University, and one of the paper's co-corresponding authors. "The specificity of this material provides a very important advantage in triggering clotting at just the right time."

The effectiveness of the platelet-like particles has been tested in an animal model and in a microfluidic chamber designed to simulate conditions within the body's circulatory system. In the chamber, tubes about the thickness of a human hair were lined with endothelial cells as in natural blood vessels.

The chamber was used to study normal human blood, as well as human blood that had been depleted of its natural platelets. In platelet-rich blood, clots formed as expected, and blood without platelets did not form clots. When the platelet-like particles were added to the platelet-depleted blood, it was able to clot.

The researchers also tested blood from infants that had undergone open heart surgery, which requires that their blood be diluted, reducing its clotting ability. When platelet-like particles were added to the dilute neonate blood, it was able to form clots.

Finally, safety testing was done on blood from hemophiliac patients. Because that blood lacks the triggers needed to cause fibrin formation, the particles had no effect.

Before they can be used in humans, the particles will have to undergo human trials and receive clearance from the U.S. Food & Drug Administration (FDA).

About one micron in diameter, the particles were originally developed to be used on the battlefield by wounded soldiers, who might self-administer them using a device about the size of a smartphone. But the researchers believe the particles could also reduce the need for platelet transfusions in patients undergoing chemotherapy or bypass surgery, and in those with certain blood disorders.

"For a patient with insufficient platelets due to bleeding or an inherited disorder, physicians often have to resort to platelet transfusions, which can be difficult to obtain," said Dr. Wilbur Lam, another of the paper's co-authors and a physician in the Aflac Cancer and Blood Disorders Center and the Department of Pediatrics at Children's Healthcare of Atlanta and the Emory University School of Medicine. "These particles could potentially be a way to obviate the need for a transfusion. Though they don't have all the assets of natural platelets, a number of intriguing experiments have shown that the particles help augment the clotting process."

In addition to providing new treatment options, the particles could also cut costs by reducing costly natural transfusions, said Lam, who is also an assistant professor in the Coulter Department of Biomedical Engineering at Georgia Tech and Emory University.

What ultimately happens to the hydrogel particles circulating in the bloodstream will be the topic of future research, noted Brown. Particles of similar size and composition are normally eliminated from the body.

While the platelet-like particles lack many features of natural platelets, the researchers were surprised to find one property in common. Clots formed by natural platelets begin to contract over a period of hours, beginning the body's repair process. Clots formed from the synthetic particles also contract, but over a longer period of time, Brown noted.

INFORMATION: In addition to those already mentioned, co-authors of the paper included Andrew Lyon, co-corresponding author and dean of the College of Science and Technology at Chapman University; Sarah Stabenfeldt, co-first author and now an assistant professor at Arizona State University; Byungwook Ahn, Riley Hannan and Victoria Stefanelli, from the Coulter Department of Biomedical Engineering; Kabir Dhada and Emily Herman from the Georgia Tech School of Chemistry and Biochemistry; Dr. Nina Guzzetta from the Division of Pediatric Cardiology at Children's Healthcare of Atlanta and Emory University School of Medicine; and Alexander Alexeev from the Woodruff School of Mechanical Engineering at Georgia Tech.

CITATION: Ashley Brown, et al., "Ultrasoft microgels displaying emergency platelet-like behaviours," Nature Materials, 2014. http://dx.doi.org/10.1038/nmat4066

This research was supported by the National Institutes of Health under awards HHSN268201000043C, R21EB013743 and R01EB011566; the John and Mary Brock Discovery Research Fund; the Department of Defense under award W81XWH1110306, and an American Heart Association Postdoctoral Fellowship. The opinions expressed in this news release are those of the authors and do not necessarily reflect the official position of the sponsoring agencies.

[Attachments] See images for this press release:
Platelet-like particles augment natural blood clotting for treating trauma

ELSE PRESS RELEASES FROM THIS DATE:

Why age reduces our stem cells' ability to repair muscle

2014-09-07
Ottawa, Canada (September 7, 2014) — As we age, stem cells throughout our bodies gradually lose their capacity to repair damage, even from normal wear and tear. Researchers from the Ottawa Hospital Research Institute and University of Ottawa have discovered the reason why this decline occurs in our skeletal muscle. Their findings were published online today in the influential journal Nature Medicine. A team led by Dr. Michael Rudnicki, senior scientist at the Ottawa Hospital Research Institute and professor of medicine at the University of Ottawa, found that as muscle ...

Rethinking the basic science of graphene synthesis

Rethinking the basic science of graphene synthesis
2014-09-07
A new route to making graphene has been discovered that could make the 21st century's wonder material easier to ramp up to industrial scale. Graphene -- a tightly bound single layer of carbon atoms with super strength and the ability to conduct heat and electricity better than any other known material -- has potential industrial uses that include flexible electronic displays, high-speed computing, stronger wind-turbine blades, and more-efficient solar cells, to name just a few under development. In the decade since Nobel laureates Konstantin Novoselov and Andre Geim proved ...

Targeting the protein-making machinery to stop harmful bacteria

2014-09-07
One challenge in killing off harmful bacteria is that many of them develop a resistance to antibiotics. Researchers at the University of Rochester are targeting the formation of the protein-making machinery in those cells as a possible alternate way to stop the bacteria. And Professor of Biology Gloria Culver has, for the first time, isolated the middle-steps in the process that creates that machinery—called the ribosomes. "No one had a clear understanding of what happened inside an intact bacterial cell," said Culver, "And without that understanding, it would not be ...

Continuing Bragg legacy of structure determination

2014-09-07
Over 100 years since the Nobel Prize-winning father and son team Sir William and Sir Lawrence Bragg pioneered the use of X-rays to determine crystal structure, University of Adelaide researchers have made significant new advances in the field. Published in the journal Nature Chemistry today, Associate Professors Christian Doonan and Christopher Sumby and their team in the School of Chemistry and Physics, have developed a new material for examining structures using X-rays without first having to crystallise the substance. "2014 is the International Year of Crystallography, ...

Ultraviolet light-induced mutation drives many skin cancers, Stanford researchers find

2014-09-07
A genetic mutation caused by ultraviolet light is likely the driving force behind millions of human skin cancers, according to researchers at the Stanford University School of Medicine. The mutation occurs in a gene called KNSTRN, which is involved in helping cells divide their DNA equally during cell division. Genes that cause cancer when mutated are known as oncogenes. Although KNSTRN hasn't been previously implicated as a cause of human cancers, the research suggests it may be one of the most commonly mutated oncogenes in the world. "This previously unknown oncogene ...

Ultra-thin, high-speed detector captures unprecedented range of light waves

Ultra-thin, high-speed detector captures unprecedented range of light waves
2014-09-07
New research at the University of Maryland could lead to a generation of light detectors that can see below the surface of bodies, walls, and other objects. Using the special properties of graphene, a two-dimensional form of carbon that is only one atom thick, a prototype detector is able to see an extraordinarily broad band of wavelengths. Included in this range is a band of light wavelengths that have exciting potential applications but are notoriously difficult to detect: terahertz waves, which are invisible to the human eye. A research paper about the new detector ...

Researchers discover a key to making new muscles

Researchers discover a key to making new muscles
2014-09-07
La Jolla, Calif., September 7, 2014 -- Researchers at Sanford-Burnham Medical Research Institute (Sanford-Burnham) have developed a novel technique to promote tissue repair in damaged muscles. The technique also creates a sustainable pool of muscle stem cells needed to support multiple rounds of muscle repair. The study, published September 7 in Nature Medicine, provides promise for a new therapeutic approach to treating the millions of people suffering from muscle diseases, including those with muscular dystrophies and muscle wasting associated with cancer and aging. There ...

UK study identifies molecule that induces cancer-killing protein

2014-09-07
LEXINGTON, Ky. (Sept. 8, 2014) – A new study by University of Kentucky researchers has identified a novel molecule named Arylquin 1 as a potent inducer of Par-4 secretion from normal cells. Par-4 is a protein that acts as a tumor suppressor, killing cancer cells while leaving normal cells unharmed. Normal cells secrete small amounts of Par-4 on their own, but this amount is not enough to kill cancer cells. Notably, if Par-4 secretion is suppressed, this leads to tumor growth. Published in Nature Chemical Biology, the UK study utilized lab cultures and animal models ...

Each day in the hospital raises risk of multidrug-resistant infection

2014-09-07
If a patient contracts an infection while in the hospital, each day of hospitalization increases by 1% the likelihood that the infection will be multidrug-resistant, according to research presented at the 54th Interscience Conference on Antimicrobial Agents and Chemotherapy (ICAAC) an infectious disease meeting of the American Society for Microbiology. Researchers from the Medical University of South Carolina gathered and analyzed historical data from 949 documented cases of Gram-negative infection at their academic medical center. In the first few days of hospitalization ...

New antifungal as effective as existing drugs with fewer adverse events

2014-09-07
A newly developed antifungal, isavuconazole, is as effective as an existing drug, voriconazole, against invasive mold disease in cancer patients with less adverse effects, according to phase 3 clinical data presented at the 54th Interscience Conference on Antimicrobial Agents and Chemotherapy, an infectious disease meeting of the American Society for Microbiology. "There is a growing need for new antifungal therapies like isavuconazole because serious fungal infections caused by Aspergillus and other molds are on the rise due to the increasing numbers of immunosuppressed ...

LAST 30 PRESS RELEASES:

UK study shows there is less stigma against LGBTQ people than you might think, but people with mental health problems continue to experience higher levels of stigma

Bringing lost proteins back home

Better than blood tests? Nanoparticle potential found for assessing kidneys

Texas A&M and partner USAging awarded 2024 Immunization Neighborhood Champion Award

UTEP establishes collaboration with DoD, NSA to help enhance U.S. semiconductor workforce

Study finds family members are most common perpetrators of infant and child homicides in the U.S.

Researchers secure funds to create a digital mental health tool for Spanish-speaking Latino families

UAB startup Endomimetics receives $2.8 million Small Business Innovation Research grant

Scientists turn to human skeletons to explore origins of horseback riding

UCF receives prestigious Keck Foundation Award to advance spintronics technology

Cleveland Clinic study shows bariatric surgery outperforms GLP-1 diabetes drugs for kidney protection

Study reveals large ocean heat storage efficiency during the last deglaciation

Fever drives enhanced activity, mitochondrial damage in immune cells

A two-dose schedule could make HIV vaccines more effective

Wastewater monitoring can detect foodborne illness, researchers find

Kowalski, Salonvaara receive ASHRAE Distinguished Service Awards

SkAI launched to further explore universe

SLU researchers identify sex-based differences in immune responses against tumors

Evolved in the lab, found in nature: uncovering hidden pH sensing abilities

Unlocking the potential of patient-derived organoids for personalized sarcoma treatment

New drug molecule could lead to new treatments for Parkinson’s disease in younger patients

Deforestation in the Amazon is driven more by domestic demand than by the export market

Demand-side actions could help construction sector deliver on net-zero targets

Research team discovers molecular mechanism for a bacterial infection

What role does a tailwind play in cycling’s ‘Everesting’?

Projections of extreme temperature–related deaths in the US

Wearable device–based intervention for promoting patient physical activity after lung cancer surgery

Self-compassion is related to better mental health among Syrian refugees

Microplastics found in coral skeletons

Stroke rates increasing in individuals living with SCD despite treatment guidelines

[Press-News.org] Platelet-like particles augment natural blood clotting for treating trauma