UC San Diego researchers build first 500 GHz photon switch
2014-09-10
(Press-News.org) The work took nearly four years to complete and it opens a fundamentally new direction in photonics – with far-reaching potential consequences for the control of photons in optical fiber channels.
Researchers at the University of California, San Diego have built the first 500 Gigahertz (GHz) photon switch. "Our switch is more than an order of magnitude faster than any previously published result to date," said UC San Diego electrical and computer engineering professor Stojan Radic. "That exceeds the speed of the fastest lightwave information channels in use today."
According to an article in the journal Science*, switching photons at such high speeds was made possible by advances in the control of a strong optical beam using only a few photons, and by the scientists' ability to engineer the optical fiber itself with accuracy down to the molecular level.
In the research paper, Radic and his colleagues in the UC San Diego Jacobs School of Engineering argue that ultrafast optical control is critical to applications that must manipulate light beyond the conventional electronic limits. In addition to very fast beam control and fast switching, the latest work opens the way to a new class of sensitive receivers (also capable of operating at very high rates), faster photon sensors, and optical processing devices.
To build the new switch, the UC San Diego team developed a new measurement technique capable of resolving sub-nanometer fluctuations in the fiber core. This was critical because local fiber dispersion varies substantially, even with small core fluctuations, and until recently, control of such small variations was not considered feasible, particularly over long device lengths.
In the experiment, a three-photon input was used to manipulate a Watt-scale beam at a speed exceeding 500 Gigahertz.
In their research, the engineers in the Photonic Systems Laboratory of UC San Diego's Qualcomm Institute demonstrated that fast control becomes possible in fiber made of silica glass. "Silica fiber represents a nearly ideal physical platform because of very low optical loss, exceptional transparency and kilometer-scale interaction lengths," noted Radic. "We showed that a silica fiber core can be controlled with sub-nanometer precision and be used for fast, few-photon control." Until recently, control of small variations was not considered feasible – particularly over long scales. But once they were able to profile the fluctuation of the actual fiber, it became clear that the silica fiber core could be controlled with sub-nanometer precision – and be used for fast, few-photon control.
Controlling a strong optical beam is not easy. Departing from the conventional approaches that rely on highly resonant physical processes or optical cavities to control an optical beam directly, the UC San Diego team used specially designed, highly nonlinear fibers and they generated all the pulses necessary for the experiments. To design the new switch, they had to derive new theory to describe interaction between photons in fiber core controlled at molecular scale. To build the device, the team also developed a new measurement technique capable of resolving sub-nanometer fiber core fluctuations. "We were able to use the technique to synthesize the first photon gate actuated by only three photons at 500GHz," said Radic, adding that two key contributors to synthesizing the photon gate include "the ability to predict the optimal microscopic variation, and our ability to measure such variations in physical fiber."
Fibers may look identical to conventional measurement instruments, and even possess the same standard core variation, yet they may offer dramatically different switching performance. This is primarily due to extreme sensitivity to core fluctuations. (To be used for switching and processing, photons must interact with each other, whereas photons used to communicate information through long-distance fiber travel in a vacuum and do not interact.)
Sensitivity to fluctuations is particularly noteworthy in the context of the fiber's core structure, which is traditionally made of glass. Its basic building block, the silicon-oxide (Si-O) molecular ring, has a 0.6-nanometer diameter, and it defines the ultimate precision with which a physical fiber core can be realized. Until recently, control of small variations was not considered feasible – particularly over long scales. But once the researchers were able to profile the fluctuation of the actual fiber, it became clear that a silica fiber core could be controlled with sub-nanometer precision, and be used for fast, few-photon control.
What made it not just feasible, but practical, was progress in measuring fiber with sub-nanometer precision. They came up with a way to measure lengths of fiber without doing damage to the fiber. "We measured kilometers of fiber samples and recorded the core variations," said Nikola Alic, a research scientist in the Photonic Systems Laboratory. Added Radic: "The technique is so sensitive, that if a fly landed on a fiber many miles away, it would distort the core ever so slightly – and we could detect and measure it."
After measuring the fiber, the UC San Diego researchers were able to generate what they call a "nanoscale signature library." From there, they identified a specific core fluctuation profile that would correspond to the maximum depletion of the photon pump. Once the calculation yielded a unique core variation profile for a length of fiber, the scientists combined two distinct fiber sections from the core fluctuation library with the same variation profile.
Then came the hard part: figuring out the efficiency and speed of few-photon control. They were able to estimate the minimum number of photons in the control pulse permitted by the specific fiber. The resulting 2.5 picosecond-long pulse (one second equals one trillion picoseconds) with a peak power of 178 nW, contains less than three photons – indicating the feasibility of few-photon switching at a 500GHz rate.
"We addressed the feasibility of few-photon switching in locally controlled fiber," said Radic, "and it is not very difficult to predict the broader implications of this approach. Specifically, the technology could be implemented for photon sensors that operate in fields that were previously not deemed possible based on the current technology roadmap." An example is a receiver that could detect a handful of photons but very slowly – with the time delay between such pulses on the order of nanoseconds, not picoseconds (one nanosecond equals 1,000 picoseconds).
Another example: long-scale, locally-controlled four-photon mixing may trigger a multi-frequency photon avalanche, meaning that a few-photon signal could induce massive pump photon annihilation.
To take full advantage of photon switching, says Radic, a new class of fibers is needed – fibers in which the fluctuation of stochastic (randomly determined) dispersions could be minimized. These must be engineered fibers, and the UC San Diego team has already built a first prototype of a fiber engineered for this purpose.
INFORMATION:
*R. Nissim, A. Pejkic, E. Myslivets, B.P. Kuo, N. Alic, S. Radic, "Ultrafast optical control by few photons in engineered fiber," Science, pp. 417-419, Vol. 345, Issue 6195, 25 July 2014. DOI:10.1126/science:1253125
ELSE PRESS RELEASES FROM THIS DATE:
This star cluster is not what it seems
2014-09-10
The Milky Way galaxy is orbited by more than 150 globular star clusters, which are balls of hundreds of thousands of old stars dating back to the formation of the galaxy. One of these, along with several others in the constellation of Sagittarius (The Archer), was found in the late eighteenth century by the French comet hunter Charles Messier and given the designation Messier 54.
For more than two hundred years after its discovery Messier 54 was thought to be similar to the other Milky Way globulars. But in 1994 it was discovered that it was actually associated with a ...
New method to detect prize particle for future quantum computing
2014-09-10
Quantum computing relies on the laws of quantum mechanics to process vast amounts of information and calculations simultaneously, with far more power than current computers. However, development of quantum computers has been limited as researchers have struggled to find a reliable way to increase the power of these systems, a power measured in Q-Bits.
Previous attempts to find the elusive Majorana particle have been very promising but have not yet provided definitive and conclusive evidence of its existence.
Now, researchers from the University of Surrey and the Ben-Gurion ...
Combining antibodies, iron nanoparticles and magnets steers stem cells to injured organs
2014-09-10
LOS ANGELES – Researchers at the Cedars-Sinai Heart Institute infused antibody-studded iron nanoparticles into the bloodstream to treat heart attack damage. The combined nanoparticle enabled precise localization of the body's own stem cells to the injured heart muscle.
The study, which focused on laboratory rats, was published today in the online peer reviewed journal Nature Communications. The study addresses a central challenge in stem cell therapeutics: how to achieve targeted interactions between stem cells and injured cells.
Although stem cells can be a potent ...
PPPL scientists take key step toward solving a major astrophysical mystery
2014-09-10
Magnetic reconnection can trigger geomagnetic storms that disrupt cell phone service, damage satellites and black out power grids. But how reconnection, in which the magnetic field lines in plasma snap apart and violently reconnect, transforms magnetic energy into explosive particle energy remains a major unsolved problem in plasma astrophysics. Magnetic field lines represent the direction, and indicate the shape, of magnetic fields.
Now scientists at the U.S. Department of Energy's (DOE) Princeton Plasma Physics Laboratory (PPPL) have taken a key step toward a solution, ...
MRI shows gray matter myelin loss strongly related to MS disability
2014-09-10
OAK BROOK, Ill. – People with multiple sclerosis (MS) lose myelin in the gray matter of their brains and the loss is closely correlated with the severity of the disease, according to a new magnetic resonance imaging (MRI) study. Researchers said the findings could have important applications in clinical trials and treatment monitoring. The study appears online in the journal Radiology.
Loss of myelin, the fatty protective sheath around nerve fibers, is a characteristic of MS, an inflammatory disease of the central nervous system that can lead to a variety of serious neurological ...
Parents' separation found to boost children's behavior problems, but only in high-income families
2014-09-10
Before they reach young adulthood, most children in the United States will experience their parents separating, divorcing, finding another partner, or getting remarried.
Research tells us that children have more behavior problems (such as aggression and defiance) when families change structure. Now a new study has found that behavior problems in children increased in families in which parents separated only in higher-income families, and that children's age also played a part in their likelihood of having behavior problems.
The study, by researchers at Georgetown University ...
Mothers' responses to babies' crying: Benefiting from and getting over childhood experiences
2014-09-10
Research has told us that infants whose mothers respond quickly, consistently, and warmly when they cry have healthier emotional development than infants whose mothers are less sensitive to their cries. A new study has found that mothers whose childhood experiences with caregivers was positive and those who have come to terms with negative experiences are more infant-oriented when they see videos of babies crying and respond more sensitively to their own babies' cries.
The study, by researchers at the University of North Carolina at Greensboro, with input from colleagues ...
When talking about body size, African-American women and doctors may be speaking different languages
2014-09-10
PHILADELPHIA, PA, September 10, 2014 – African American women and their female children have the highest obesity prevalence of any demographic group and are more likely to underestimate their body weight than white women. Yet, according to new research from Rush University Medical Center, cultural norms for body size may prevent awareness among many African American women about the potential health benefits they and others in their cultural group might achieve through weight loss.
Led by Elizabeth Lynch, PhD, this research recruited African American women in a low-income ...
Smartphones may aid in dietary self-monitoring
2014-09-10
PHILADELPHIA, PA, September 10, 2014 – Smartphones have seen wide adoption among Americans in recent years because of their ease of use and adaptability. With that in mind, researchers from Arizona State University examined how smartphone use affected weight loss goals and determined that smartphones may offer users an advantage over traditional methods when tracking diet data.
Roughly 83% of Americans now own a mobile phone and 45% own smartphones with Internet access. For this study, researchers recruited healthy, weight-stable adults and semirandomly divided them ...
Molecular self-assembly controls graphene-edge configuration
2014-09-10
Sendai, Japan – A research team headed by Prof. Patrick Han and Prof. Taro Hitosugi at the Advanced Institute of Materials Research (AIMR), Tohoku University discovered a new bottom-up fabrication method that produces defect-free graphene nanoribbons (GNRs) with periodic zigzag-edge regions. This method, which controls GNR growth direction and length distribution, is a stepping stone towards future graphene-device fabrication by self-assembly.
Graphene, with its low dimensionality, high stability, high strength, and high charge-carrier mobility, promises to be a revolutionary ...