PRESS-NEWS.org - Press Release Distribution
PRESS RELEASES DISTRIBUTION

Study shows how epigenetic memory is passed across generations

Researchers traced markers of gene repression through cell division and showed that both sperm and eggs transmit a memory of gene repression to embryos

2014-09-19
(Press-News.org) A growing body of evidence suggests that environmental stresses can cause changes in gene expression that are transmitted from parents to their offspring, making "epigenetics" a hot topic. Epigenetic modifications do not affect the DNA sequence of genes, but change how the DNA is packaged and how genes are expressed. Now, a study by scientists at the University of California, Santa Cruz, shows how epigenetic memory can be passed across generations and from cell to cell during development.

The study, published September 19 in Science, focused on one well studied epigenetic modification--the methylation of a DNA packaging protein called histone H3. Methylation of a particular amino acid (lysine 27) in histone H3 is known to turn off or "repress" genes, and this epigenetic mark is found in all multicellular animals, from humans to the tiny roundworm C. elegans that was used in this study.

"There has been ongoing debate about whether the methylation mark can be passed on through cell divisions and across generations, and we've now shown that it is," said corresponding author Susan Strome, a professor of molecular, cell and developmental biology at UC Santa Cruz.

Strome's lab created worms with a mutation that knocks out the enzyme responsible for making the methylation mark, then bred them with normal worms. Using fluorescent labels, they were able to track the fates of marked and unmarked chromosomes under the microscope, from egg cells and sperm to the dividing cells of embryos after fertilization. Embryos from mutant egg cells fertilized by normal sperm had six methylated chromosomes (from the sperm) and six unmarked or "naked" chromosomes (from the egg).

As embryos develop, the cells replicate their chromosomes and divide. The researchers found that when a marked chromosome replicates, the two daughter chromosomes are both marked. But without the enzyme needed for histone methylation, the marks become progressively diluted with each cell division.

"The mark stays on the chromosomes derived from the initial chromosome that had the mark, but there's not enough mark for both daughter chromosomes to be fully loaded," Strome said. "So the mark is bright in a one-cell embryo, less bright after the cell divides, dimmer still in a four-cell embryo, and by about 24 to 48 cells we can't see it anymore."

The researchers then did the converse experiment, fertilizing normal egg cells with mutant sperm. The methylation enzyme (called PRC2) is normally present in egg cells but not in sperm, which don't contribute much more than their chromosomes to the embryo. So the embryos in the new experiment still had six naked chromosomes (this time from the sperm) and six marked chromosomes, but now they also had the enzyme.

"Remarkably, when we watch the chromosomes through cell divisions, the marked chromosomes remain marked and stay bright, because the enzyme keeps restoring the mark, but the naked chromosomes stay naked, division after division," Strome said. "That shows that the pattern of marks that was inherited is being transmitted through multiple cell divisions."

Strome noted that the findings in this study of transmission of histone methylation in C. elegans have important implications in other organisms, even though different organisms use the repressive marker that was studied to regulate different genes during different aspects of development. All animals use the same enzyme to create the same methylation mark as a signal for gene repression, and her colleagues who study epigenetics in mice and humans are excited about the new findings, Strome said.

"Transgenerational epigenetic inheritance is not a solved field--it's very much in flux," she said. "There are dozens of potential epigenetic markers. In studies that document parent-to-child epigenetic inheritance, it's not clear what's being passed on, and understanding it molecularly is very complicated. We have a specific example of epigenetic memory that is passed on, and we can see it in the microscope. It's one piece of the puzzle."

INFORMATION: The first author of the Science paper is Laura Gaydos, a graduate student in Strome's lab at UC Santa Cruz who led the study for her Ph.D. thesis and is now a postdoctoral researcher at Fred Hutchinson Cancer Research Center in Seattle. The other coauthor is Wenchao Wang, who did one of the initial experiments as a graduate student in Strome's lab several years ago when she was at Indiana University. This research was supported by the National Institutes of Health, a UCSC Dissertation Year Fellowship, and the ARCS Foundation.


ELSE PRESS RELEASES FROM THIS DATE:

New insights into the world of quantum materials

2014-09-19
This news release is available in German. How a system behaves is determined by its interaction properties. An important concept in condensed matter physics for describing the energy distribution of electrons in solids is the Fermi surface, named for Italian physicist Enrico Fermi. The existence of the Fermi surface is a direct consequence of the Pauli exclusion principle, which forbids two identical fermions from occupying the same quantum state simultaneously. Energetically, the Fermi surface divides filled energy levels from the empty ones. For electrons and other ...

A more efficient, lightweight and low-cost organic solar cell

2014-09-19
AMHERST, Mass. – For decades, polymer scientists and synthetic chemists working to improve the power conversion efficiency of organic solar cells were hampered by the inherent drawbacks of commonly used metal electrodes, including their instability and susceptibility to oxidation. Now for the first time, researchers at the University of Massachusetts Amherst have developed a more efficient, easily processable and lightweight solar cell that can use virtually any metal for the electrode, effectively breaking the "electrode barrier." This barrier has been a big problem ...

Pupil size shows reliability of decisions

2014-09-19
The precision with which people make decisions can be predicted by measuring pupil size before they are presented with any information about the decision, according to a new study published in PLOS Computational Biology this week. The study, conducted by Peter Murphy and colleagues at Leiden University, showed that spontaneous, moment-to-moment fluctuations in pupil size predicted how a selection of participants varied in their successful decision making. A larger pupil size indicated poorer upcoming task performance, due to more variability in the decisions made once ...

World breakthrough: A new molecule allows for an increase in stem cell transplants

2014-09-19
This news release is available in French. Investigators from the Institute for Research in Immunology and Cancer (IRIC) at the Université de Montréal have just published, in the prestigious magazine Science, the announcement of the discovery of a new molecule, the first of its kind, which allows for the multiplication of stem cells in a unit of cord blood. Umbilical cord stem cells are used for transplants aimed at curing a number of blood-related diseases, including leukemia, myeloma and lymphoma. For many patients this therapy comprises a treatment of last resort. Directed ...

Toward optical chips

2014-09-19
Chips that use light, rather than electricity, to move data would consume much less power — and energy efficiency is a growing concern as chips' transistor counts rise. Of the three chief components of optical circuits — light emitters, modulators, and detectors — emitters are the toughest to build. One promising light source for optical chips is molybdenum disulfide (MoS2), which has excellent optical properties when deposited as a single, atom-thick layer. Other experimental on-chip light emitters have more-complex three-dimensional geometries and use rarer materials, ...

Mouse model sheds light on role of mitochondria in neurodegenerative diseases

2014-09-19
(SALT LAKE CITY)—A new study by researchers at the University of Utah School of Medicine sheds light on a longstanding question about the role of mitochondria in debilitating and fatal motor neuron diseases and resulted in a new mouse model to study such illnesses. Researchers led by Janet Shaw, Ph.D., professor of biochemistry, found that when healthy, functioning mitochondria was prevented from moving along axons – nerve fibers that conduct electricity away from neurons – mice developed symptoms of neurodegenerative diseases. In a study in the Proceedings of the ...

Penn research helps uncover mechanism behind solid-solid phase transitions

Penn research helps uncover mechanism behind solid-solid phase transitions
2014-09-19
Two solids made of the same elements but with different geometric arrangements of the atoms, or crystal phases, can produce materials with different properties. Coal and diamond offer a spectacular example of this effect. While it is well known that one crystal phase can transform into another under the right circumstances, the mechanisms that facilitate solid-to-solid transitions are still not well understood. Atoms can rearrange themselves to transform from a "parent" phase into a "daughter" phase by two major routes, but it is difficult to predict which route a material ...

Evolution of responses to (un)fairness

2014-09-19
The sense of fairness did not evolve for the sake of fairness per se but in order to reap the benefits of continued cooperation, so say Frans de Waal, PhD, and Sarah Brosnan, PhD, co-authors of a review article about inequity aversion (IA), which is defined as a negative reaction to unequal outcomes. The review is published in Science. Their conclusion comes after the co-authors reviewed more than 35 IA-related studies to address their hypothesis that it is the evolution of forestalling partner dissatisfaction with obtained outcomes and its negative impact on future ...

Even without kids, couples eat frequent family meals

2014-09-19
COLUMBUS, Ohio – Couples and other adult family members living without minors in the house are just as likely as adults living with young children or adolescents to eat family meals at home on most days of the week, new research suggests. The study is the first large-scale look at family-meal eating patterns in American adults. While a substantial amount of research has focused on health benefits for children who regularly eat family meals, such eating patterns have not been widely studied in adult-only households. Researchers analyzed data on more than 14,000 Ohio ...

For legume plants, a new route from shoot to root

2014-09-19
A new study shows that legume plants regulate their symbiotic relationship with soil bacteria by using cytokinins—signaling molecules— that are transmitted through the plant structure from leaves into the roots to control the number of bacteria-holding nodules in the roots. This collaborative study was conducted by researchers from the National Institute for Basic Biology, the Graduate University for Advanced Studies (SOKENDAI), and the RIKEN Center for Sustainable Resource Science in Japan. Legumes, an important plant family which includes lentils, soybeans, and peanuts, ...

LAST 30 PRESS RELEASES:

New perspective highlights urgent need for US physician strike regulations

An eye-opening year of extreme weather and climate

Scientists engineer substrates hostile to bacteria but friendly to cells

New tablet shows promise for the control and elimination of intestinal worms

Project to redesign clinical trials for neurologic conditions for underserved populations funded with $2.9M grant to UTHealth Houston

Depression – discovering faster which treatment will work best for which individual

Breakthrough study reveals unexpected cause of winter ozone pollution

nTIDE January 2025 Jobs Report: Encouraging signs in disability employment: A slow but positive trajectory

Generative AI: Uncovering its environmental and social costs

Lower access to air conditioning may increase need for emergency care for wildfire smoke exposure

Dangerous bacterial biofilms have a natural enemy

Food study launched examining bone health of women 60 years and older

CDC awards $1.25M to engineers retooling mine production and safety

Using AI to uncover hospital patients’ long COVID care needs

$1.9M NIH grant will allow researchers to explore how copper kills bacteria

New fossil discovery sheds light on the early evolution of animal nervous systems

A battle of rafts: How molecular dynamics in CAR T cells explain their cancer-killing behavior

Study shows how plant roots access deeper soils in search of water

Study reveals cost differences between Medicare Advantage and traditional Medicare patients in cancer drugs

‘What is that?’ UCalgary scientists explain white patch that appears near northern lights

How many children use Tik Tok against the rules? Most, study finds

Scientists find out why aphasia patients lose the ability to talk about the past and future

Tickling the nerves: Why crime content is popular

Intelligent fight: AI enhances cervical cancer detection

Breakthrough study reveals the secrets behind cordierite’s anomalous thermal expansion

Patient-reported influence of sociopolitical issues on post-Dobbs vasectomy decisions

Radon exposure and gestational diabetes

EMBARGOED UNTIL 1600 GMT, FRIDAY 10 JANUARY 2025: Northumbria space physicist honoured by Royal Astronomical Society

Medicare rules may reduce prescription steering

Red light linked to lowered risk of blood clots

[Press-News.org] Study shows how epigenetic memory is passed across generations
Researchers traced markers of gene repression through cell division and showed that both sperm and eggs transmit a memory of gene repression to embryos