(Press-News.org) Last week, at the International Conference on Intelligent Robots and Systems, MIT researchers unveiled an oval-shaped submersible robot, a little smaller than a football, with a flattened panel on one side that it can slide along an underwater surface to perform ultrasound scans.
Originally designed to look for cracks in nuclear reactors' water tanks, the robot could also inspect ships for the false hulls and propeller shafts that smugglers frequently use to hide contraband. Because of its small size and unique propulsion mechanism — which leaves no visible wake — the robots could, in theory, be concealed in clumps of algae or other camouflage. Fleets of them could swarm over ships at port without alerting smugglers and giving them the chance to jettison their cargo.
"It's very expensive for port security to use traditional robots for every small boat coming into the port," says Sampriti Bhattacharyya, a graduate student in mechanical engineering, who designed the robot together with her advisor, Ford Professor of Engineering Harry Asada. "If this is cheap enough — if I can get this out for $600, say — why not just have 20 of them doing collaborative inspection? And if it breaks, it's not a big deal. It's very easy to make."
Indeed, Bhattacharyya built the main structural components of the robot using a 3-D printer in Asada's lab. Half of the robot — the half with the flattened panel — is waterproof and houses the electronics. The other half is permeable and houses the propulsion system, which consists of six pumps that expel water through rubber tubes.
Two of those tubes vent on the side of the robot opposite the flattened panel, so they can keep it pressed against whatever surface the robot is inspecting. The other four tubes vent in pairs at opposite ends of the robot's long axis and control its locomotion.
Courting instability
As Bhattacharyya explains, the elliptical shape of the robot is inherently unstable — by design. "It's very similar to fighter jets, which are made unstable so that you can maneuver them easily," she says. "If I turn on the two jets [at one end], it won't go straight. It will just turn."
That tendency to turn is an asset when the robot is trying to execute tight maneuvers, but it's a liability when it's traveling in a straight line scanning the hull of a ship. So all the tubes exit the robot at different angles, which Bhattacharyya calculated to provide the greatest degree of control over the robot's instabilities.
In the robot's watertight chamber are its control circuitry, its battery, a communications antenna, and an inertial measurement unit, which consists of three accelerometers and three gyroscopes that can gauge the robot's motion in any direction. The control algorithm constantly adjusts the velocity of the water pumped through each of the six jets to keep the robot on course.
In their initial experiments, the researchers were just testing the robot's ability to navigate to an underwater surface and stay in contact with it while traveling in a straight line, so the prototype is not yet equipped with an ultrasound sensor.
The rechargeable lithium batteries used in the prototype, Bhattacharyya says, last about 40 minutes. Since the robot can travel between half a meter and a meter per second while pressed against a surface, that should give it ample time to inspect multiple small craft before being recharged. The researchers envision that teams of the robots could be kept in rotation, some returning to port to recharge just as others are going back on duty.
Their next prototype, Bhattacharyya says, will feature wirelessly rechargeable batteries. And modifications to the propulsion system, she says, should increase the robot's operation time on a single charge to 100 minutes.
Keep your distance
Bhattacharyya notes that while she and Asada have demonstrated the robot's ability to travel along a smooth surface, the hulls of many ships will have encrustations that might prevent continuous contact. Ultrasound, however, works only when the emitter is in direct contact with the object to be scanned — or when its distance is a specific multiple of the wavelength of sound.
Maintaining that precise distance is a tall order, but in ongoing work, Bhattacharyya and Asada are exploring mechanical systems that would create hydrodynamic buffers of just the right depth to enable the robot to perform ultrasound scans without surface contact.
INFORMATION:
The MIT research was funded by the National Science Foundation.
Written by Larry Hardesty, MIT News Office
Additional background
Inside the innards of a nuclear reactor:
http://newsoffice.mit.edu/2011/nuclear-robots-0721
Underwater robot for port security
Football-size robot can skim discreetly along a ship's hull to seek hollow compartments concealing contraband
2014-09-26
ELSE PRESS RELEASES FROM THIS DATE:
Penn team studies nanocrystals by passing them through tiny pores
2014-09-26
An interdisciplinary team of University of Pennsylvania researchers has now applied a cutting-edge technique for rapid gene sequencing toward measuring other nanoscopic structures. By passing nanoscale spheres and rods through a tiny hole in a membrane, the team was able to measure the electrical properties of those structures' surfaces.
Their findings suggest new ways of using this technique, known as "nanopore translocation," to analyze objects at the smallest scale.
The research was led by Marija Drndić, professor in the Department of Physics and Astronomy ...
Geisel researchers contribute to study of trained immunity
2014-09-26
Hanover, NH - A study published in the journal Science provides support for a new—and still controversial—understanding of the immune system. The research was conducted by collaborators in the U.S. and Europe, including Robert Cramer, PhD, an assistant professor of microbiology and immunology at the Geisel School of Medicine and member of the Dartmouth Lung Biology Center, and Kelly Shepherdson, PhD, at the time a graduate student in Cramer's lab.
Typically, scientists divide the immune system into two categories: the innate immune response and the adaptive immune response. ...
New UT Dallas technology may lead to prolonged power in mobile devices
2014-09-26
Researchers from The University of Texas at Dallas have created technology that could be the first step toward wearable computers with self-contained power sources or, more immediately, a smartphone that doesn't die after a few hours of heavy use.
This technology, published online in Nature Communications, taps into the power of a single electron to control energy consumption inside transistors, which are at the core of most modern electronic systems.
Researchers from the Erik Jonsson School of Engineering and Computer Science found that by adding a specific atomic ...
High-throughput cell-sorting method can separate 10 billion bacterial cells in 30 minutes
2014-09-26
University of Hawaii at Manoa College of Engineering mechanical engineer Yi Zuo has developed a new, high-throughput method for sorting cells capable of separating 10 billion bacterial cells in 30 minutes.
The finding has already proven useful for studying bacterial cells and microalgae, and could one day have direct applications for biomedical research and environmental science—basically any field in which a large quantity of microbial samples need to be processed.
The new method was described in a September 2014 publication in the scientific journal Analytical Chemistry, ...
New scientific review of genetically engineered feeds in livestock diets
2014-09-26
An article published in the peer-reviewed Journal of Animal Science concludes feeding livestock diets that contain genetically engineered (GE) crops has no impact on the health or productivity of those animals. In a thorough review of scientific literature and field data sets, the article documents evidence that the performance and health of food-producing animals fed GE crops are comparable with those of animals fed non-GE crops.
Since their introduction in 1996, GE feed crops have become an increasing component of livestock diets. Today, more than 95 percent of U.S. ...
Experts call for widening the debate on climate change
2014-09-26
Environmental scientists are being urged to broaden the advice they give on global climate change, say experts who are also frustrated that decision makers are not taking enough action.
Writing in the journal Nature Climate Change, The University of Manchester researchers argue that scientists are expressing a strong desire to fix the problems highlighted by their studies into human-induced climate change
The authors suggest there are problems with environmental scientists offering practical solutions that can help societies adapt to a fast-changing Earth - one where ...
How plankton gets jet lagged
2014-09-26
A hormone that governs sleep and jet lag in humans may also drive the mass migration of plankton in the ocean, scientists at the European Molecular Biology Laboratory (EMBL) in Heidelberg, Germany, have found. The molecule in question, melatonin, is essential to maintain our daily rhythm, and the European scientists have now discovered that it governs the nightly migration of a plankton species from the surface to deeper waters. The findings, published online today in Cell, indicate that melatonin's role in controlling daily rhythms probably evolved early in the history ...
Green light for clever algae
2014-09-26
The researchers headed by Prof Dr Nicole Frankenberg-Dinkel have been the first ones to reveal similarities and differences in the assembly of the light-harvesting machinery of the cryptophyte Guillardia theta compared to cyanobacteria and red algae. The publication of their results in the current issue of "The Journal of Biological Chemistry" is among the two per cent of the publications that were selected as "Paper of the week".
Cryptophytes: Matryoshka dolls of the waters
Unlike traditional eukaryotic cells – i.e. all cells with a nucleus – cryptophyte cells resemble ...
Skin pigment renders sun's UV radiation harmless using projectiles
2014-09-26
Researchers at Lund University in Sweden and other institutions have worked out how the pigment of the skin manages to protect the body from the sun's dangerous UV rays. The skin pigment converts the UV radiation into heat through a rapid chemical reaction that shoots protons from the molecules of the pigment.
In a new study, the team from Lund University, working with colleagues in France and Italy, have studied pigment in the skin and its building blocks. Pigment in both skin and hair comprises two different types of melanin: eumelanin and pheomelanin. Eumelanin makes ...
Antibacterial resistance a cause for major concern according to world leading cystic fibrosis expert
2014-09-26
World leading Cystic Fibrosis experts, from Queen's University Belfast, have called for greater research to address the major concern of antibacterial resistance.
Professor Stuart Elborn, an international authority on respiratory medicine, said that more funding and further research are required into antibiotic resistance in order to improve patient outcomes for people with Cystic Fibrosis.
In his paper, Infections in chronic lung diseases 2, which was recently published in The Lancet, Professor Elborn reviews current research into infections in chronic lung diseases. ...
LAST 30 PRESS RELEASES:
Intermittent fasting cut Crohn’s disease activity by 40% and halved inflammation in randomized clinical trial
New study in JNCCN unlocks important information about how to treat recurring prostate cancer
Simple at-home tests for detecting cat, dog viruses
New gut-brain discovery offers hope for treating ALS and dementia
Cognitive speed training linked to lower dementia incidence up to 20 years later
Businesses can either lead transformative change or risk extinction: IPBES
Opening a new window on the brainstem, AI algorithm enables tracking of its vital white matter pathways
Dr. Paul Donlin-Asp of the University of Edinburgh to dissect the molecular functions and regulation of local SYNGAP1 protein synthesis with support from CURE SYNGAP1 (fka SynGAP Research Fund)
Seeing the whole from a part: Revealing hidden turbulent structures from limited observations and equations
Unveiling polymeric interactions critical for future drug nanocarriers
New resource supports trauma survivors, health professionals
Evidence of a subsurface lava tube on Venus
New trial aims to transform how we track our daily diet
People are more helpful when in poor environments
How big can a planet be? With very large gas giants, it can be hard to tell
New method measures energy dissipation in the smallest devices
More than 1,000 institutions worldwide now partner with MDPI on open access
Chronic alcohol use reshapes gene expression in key human brain regions linked to relapse vulnerability and neural damage
Have associations between historical redlining and breast cancer survival changed over time?
Brief, intensive exercise helps patients with panic disorder more than standard care
How to “green” operating rooms: new guideline advises reduce, reuse, recycle, and rethink
What makes healthy boundaries – and how to implement them – according to a psychotherapist
UK’s growing synthetic opioid problem: Nitazene deaths could be underestimated by a third
How rice plants tell head from toe during early growth
Scientists design solar-responsive biochar that accelerates environmental cleanup
Construction of a localized immune niche via supramolecular hydrogel vaccine to elicit durable and enhanced immunity against infectious diseases
Deep learning-based discovery of tetrahydrocarbazoles as broad-spectrum antitumor agents and click-activated strategy for targeted cancer therapy
DHL-11, a novel prieurianin-type limonoid isolated from Munronia henryi, targeting IMPDH2 to inhibit triple-negative breast cancer
Discovery of SARS-CoV-2 PLpro inhibitors and RIPK1 inhibitors with synergistic antiviral efficacy in a mouse COVID-19 model
Neg-entropy is the true drug target for chronic diseases
[Press-News.org] Underwater robot for port securityFootball-size robot can skim discreetly along a ship's hull to seek hollow compartments concealing contraband




