(Press-News.org) Researchers have identified a molecular mechanism that could explain why the common cold can bring on life-threatening asthma attacks.
Published today in Science Translational Medicine, the findings indicate this may be a potential target for new drugs that could be more effective than existing treatments.
Viruses that infect the airways are the most common cause of asthma attacks, accounting for 80-90 per cent of cases. The great majority of these are rhinoviruses, which are the predominant cause of the common cold.
Although illnesses caused by rhinoviruses are usually relatively mild for most people, they can also infect the lungs and, in people with respiratory diseases such as asthma, they can trigger severe attacks, sometimes leading to hospitalisation. The hallmark features of an asthma attack are inflammation and obstruction of the airways, and increased mucus production. These are all part of type-2 immune responses, which usually occur in response to allergies and parasitic infections. Until now it has been unclear how a rhinovirus infection can trigger such a response.
The new study, conducted at the Medical Research Council (MRC) & Asthma UK Centre in Allergic Mechanisms of Asthma at Imperial College London and King's College London, has confirmed that a small molecule or cytokine called IL-25 may play a central role in the effects of rhinoviruses on asthmatics. For the first time researchers have identified a possible sequence of biological events that could trigger these attacks.
The research shows that IL-25 is induced by rhinovirus infection, and is capable of instigating the production of other type-2 cytokines, creating a 'cascade' of these molecules which drives the type-2 immune response. Recent trials report that antibodies that block individual type-2 cytokines have modest therapeutic effects. The hope is that if scientists can target and block IL-25, this will stop the cascade 'higher up' and potentially produce a much greater therapeutic effect.
Dr Nathan Bartlett, Honorary Lecturer at the National Heart and Lung Institute, Imperial College London and joint lead author of the study said: "Our research has shown for the first time that the cells that line the airways of asthmatics are more prone to producing a small molecule called IL-25, which then appears to trigger a chain of events that causes attacks. By targeting this molecule at the top of the cascade, we could potentially discover a much-needed new treatment to control this potentially life-threatening reaction in asthma sufferers."
According to the World Health Organization, 235 million people suffer from asthma worldwide and asthma is the most common noncommunicable disease among children. In the UK, 5.4 million people are currently receiving treatment for asthma. That is one in every 12 adults and one in every 11 children.
The research team compared cells taken from the lungs of asthmatics to cells from healthy volunteers and demonstrated that, when infected with a rhinovirus, asthmatic lung cells produce around 10-fold higher levels of IL-25. To examine IL-25 expression directly in the airways the researchers then infected asthmatic and healthy volunteers with a rhinovirus and found that asthmatics had a higher level of IL-25 in nasal secretions.
By simulating asthma in mice and infecting them with a rhinovirus, the researchers discovered that increased IL-25 is associated with increased levels of other cytokines in the type-2 response, and that blocking IL-25 with an antibody decreases the levels of these other cytokines. These results suggest that IL-25 could be a target for possible treatments to prevent asthma attacks.
Professor Sebastian Johnston, from the National Heart and Lung Institute at Imperial College London, and joint lead author of the study, said: "Asthma attacks are still a huge healthcare problem. Existing medication containing inhaled steroids, are highly effective at controlling regular asthma symptoms, but during an attack the symptoms worsen and can lead to the patient going to hospital. This new study provides exciting results about potential ways to address this big unmet medical need. The next steps are to test blocking IL-25 in humans, and to investigate other possible pathways that could be important in asthma attacks and pool this knowledge to develop effective treatments." Professor Johnston is the Director of the MRC & Asthma UK Centre in Allergic Mechanisms of Asthma and Asthma UK Clinical Chair.
Dr Samantha Walker, Director of Research and Policy at Asthma UK, said: "Excitingly, this research, although still at an early stage, could potentially lead to the development of new medicines to prevent life threatening asthma attacks. Years of research underfunding means that asthma still remains a relative mystery and the millions of people with asthma need more studies like this to bring us one step closer to new treatments. Promisingly we now have new technologies, talented asthma scientists and international collaborations with the potential to make life changing discoveries about asthma."
INFORMATION:
The study was funded by the MRC, Asthma UK, the National Institute for Health Research Imperial Biomedical Research Centre and Novartis Institute for Biomedical Research.
Reference: Beale et al. 'Rhinovirus induced IL-25 in asthma exacerbation drives type-2 immunity and allergic pulmonary inflammation.' Science Translational Medicine, 2014. doi/10.1126/scitranslmed.3009124
For more information please contact:
Franca Davenport (29 September) or Sam Wong (30 September and 1 October)
Research Media Officers
Imperial College London
Email: f.davenport@imperial.ac.uk Tel: +44(0) 20 7594 3415
Email: sam.wong@imperial.ac.uk Tel: +44(0) 20 7594 2198
Out of hours duty press officer: +44(0)7803 886 248
Notes to editors:
1. The paper will be available after the embargo lifts at http://stm.sciencemag.org/lookup/doi/10.1126/scitranslmed.3009124
2. About Imperial College London
Consistently rated amongst the world's best universities, Imperial College London is a science-based institution with a reputation for excellence in teaching and research that attracts 14,000 students and 6,000 staff of the highest international quality. Innovative research at the College explores the interface between science, medicine, engineering and business, delivering practical solutions that improve quality of life and the environment - underpinned by a dynamic enterprise culture.
Since its foundation in 1907, Imperial's contributions to society have included the discovery of penicillin, the development of holography and the foundations of fibre optics. This commitment to the application of research for the benefit of all continues today, with current focuses including interdisciplinary collaborations to improve global health, tackle climate change, develop sustainable sources of energy and address security challenges.
In 2007, Imperial College London and Imperial College Healthcare NHS Trust formed the UK's first Academic Health Science Centre. This unique partnership aims to improve the quality of life of patients and populations by taking new discoveries and translating them into new therapies as quickly as possible.
http://www.imperial.ac.uk
3. About King's College London
King's College London is one of the top 20 universities in the world (2014/15 QS World University Rankings) and the fourth oldest in England. It is The Sunday Times 'Best University for Graduate Employment 2012/13'. King's has nearly 26,000 students (of whom more than 10,600 are graduate students) from some 140 countries worldwide, and more than 7,000 staff. The College is in the second phase of a £1 billion redevelopment programme which is transforming its estate.
4. The Medical Research Council has been at the forefront of scientific discovery to improve human health. Founded in 1913 to tackle tuberculosis, the MRC now invests taxpayers' money in some of the best medical research in the world across every area of health. Twenty-nine MRC-funded researchers have won Nobel prizes in a wide range of disciplines, and MRC scientists have been behind such diverse discoveries as vitamins, the structure of DNA and the link between smoking and cancer, as well as achievements such as pioneering the use of randomised controlled trials, the invention of MRI scanning, and the development of a group of antibodies used in the making of some of the most successful drugs ever developed. Today, MRC-funded scientists tackle some of the greatest health problems facing humanity in the 21st century, from the rising tide of chronic diseases associated with ageing to the threats posed by rapidly mutating micro-organisms. http://www.mrc.ac.uk.
5. About Asthma UK
Asthma UK is the UK's leading asthma charity. We're here to support people with asthma when they need us the most and fund world-leading research to find better treatments and ultimately a cure.
Our goal is to prevent asthma attacks, especially those that result in death and emergency hospitalisation.
The Asthma UK Helpline is open weekdays from 9am to 5pm on 0800 121 62 44.
For more information about asthma please visit http://www.asthma.org.uk
6. The National Institute for Health Research (NIHR) is funded by the Department of Health to improve the health and wealth of the nation through research. Since its establishment in April 2006, the NIHR has transformed research in the NHS. It has increased the volume of applied health research for the benefit of patients and the public, driven faster translation of basic science discoveries into tangible benefits for patients and the economy, and developed and supported the people who conduct and contribute to applied health research. The NIHR plays a key role in the Government's strategy for economic growth, attracting investment by the life-sciences industries through its world-class infrastructure for health research. Together, the NIHR people, programmes, centres of excellence and systems represent the most integrated health research system in the world. For further information, visit the NIHR website.
Study finds potential new target to treat asthma attacks brought on by colds
2014-10-01
ELSE PRESS RELEASES FROM THIS DATE:
Stem cell discovery could lead to better treatments for blindness
2014-10-01
Scientists at the University of Southampton have discovered that a region on the front surface of the eye harbours special stem cells that could treat blinding eye conditions.
This part of the eye is called the 'corneal limbus' and is a narrow gap lying between the transparent cornea and white sclera.
The research, published in PLOS ONE, showed that stem cells can be cultured from the corneal limbus in vitro. Under the correct culture conditions, these cells could be directed to behave like the cells needed to see light - photoreceptor cells.
The loss of photoreceptors ...
Predictor of tissue injury in kidney transplant recipients found
2014-10-01
Researchers at UC San Francisco and Rush University Medical Center, Chicago, may have found a predictor for a disorder affecting kidney transplant recipients that can accelerate organ failure, a discovery that eventually could allow for customized therapies and improved patient selection for transplant.
The study of focal segmental glomerulosclerosis (FSGS), a devastating form of kidney disease, is in the Oct. 1 issue of Science Translational Medicine. Research was conducted by an international study team, with Necker Hospital in Paris and UCSF joint lead authors and ...
Researchers find promise in new treatments for GBM
2014-10-01
(Boston) — Glioblastma multiforme (GBM) is one of the most lethal primary brain tumors, with median survival for these patients only slightly over one year. Researchers at Boston University School of Medicine (BUSM), in collaboration with researchers from the City of Hope, are looking toward novel therapeutic strategies for the treatment of GBM in the form of targeted therapies against a unique receptor, the interleukin-13 receptor α chain variant 2 (IL13Rα2).
In a review paper published in the October issue of Neuro-Oncology, the researchers discuss various ...
Team advances understanding of the Greenland Ice Sheet's meltwater channels
2014-10-01
An international research team's field work, drilling and measuring melt rates and ice sheet movement in Greenland is showing that things are, in fact, more complicated than we thought.
"Although the Greenland Ice Sheet initially speeds up each summer in its slow-motion race to the sea, the network of meltwater channels beneath the sheet is not necessarily forming the slushy racetrack that had been previously considered," said Matthew Hoffman, a Los Alamos National Laboratory scientist on the project.
A high-profile paper appearing in Nature this week notes that observations ...
NASA sees intensifying typhoon Phanfone heading toward Japan
2014-10-01
VIDEO:
NASA's TRMM satellite saw Phanfone was producing rainfall over a very large area on Oct. 1. Some storms in these bands were dropping rain at a rate of over 76...
Click here for more information.
An intensifying typhoon called Phanfone that originated east of Guam on September 28, 2014 is headed toward southern Japan. The TRMM satellite crossed above Typhoon Phanfone on October 1, 2014 at 1039 UTC and gathered data about rainfall rates occurring in the storm.
TRMM, ...
Genetic secrets of the monarch butterfly revealed
2014-10-01
The monarch butterfly is one of the most iconic insects in the world, best known for its distinct orange and black wings and a spectacular annual mass migration across North America. However, little has been known about the genes that underlie these famous traits, even as the insect's storied migration appears to be in peril.
Sequencing the genomes of monarch butterflies from around the world, a team of scientists has now made surprising new insights into the monarch's genetics. They identified a single gene that appears central to migration – a behavior generally regarded ...
Gut bacteria are protected by host during illness
2014-10-01
To protect their gut microbes during illness, sick mice produce specialized sugars in the gut that feed their microbiota and maintain a healthy microbial balance. This protective mechanism also appears to help resist or tolerate additional harmful pathogens, and its disruption may play a role in human diseases such as Crohn's disease, report scientists from the University of Chicago in Nature on Oct 1.
"Both hosts and their gut microbiota can suffer in the case of sickness, but this mutually beneficial relationship is guarded by the host," said study senior author Alexander ...
New study explains wintertime ozone pollution in Utah oil and gas fields
2014-10-01
Chemicals released into the air by oil and gas exploration, extraction and related activities can spark reactions that lead to high levels of ozone in wintertime, high enough to exceed federal health standards, according to new NOAA-led research, published today in Nature.
The study comes at a time when new technologies are helping to accelerate oil and gas development in Utah's Uintah Basin, elsewhere in the United States and in many other countries, and its findings may help air quality managers determine how to best minimize the impact of ozone pollution.
When ozone ...
Evolving plumbing system beneath Greenland slows ice sheet as summer progresses
2014-10-01
AUSTIN, Texas—A team led by scientists at the University of Texas at Austin's Institute for Geophysics has for the first time directly observed multiple parts of Greenland's subglacial plumbing system and how that system evolves each summer to slow down the ice sheet's movement toward the sea.
These new observations could be important in accurately modeling Greenland's future response to climate change.
"Everyone wants to know what's happening under Greenland as it experiences more and more melt," said study coauthor Ginny Catania, a research scientist at the institute ...
Winter is coming ... to Titan's south pole
2014-10-01
Titan is unique in our solar system because of its dense nitrogen-methane atmosphere, which is very similar to Earth's in some ways, but very different in others. For example, air temperatures are around 200 degrees colder and, in contrast to the warm salt water seas of Earth, frigid hydrocarbon lakes populate Titan's surface.
Titan has seasons just like Earth, only each season lasts over seven years instead of three months due to its ponderous orbit around the Sun. After equinox in 2009, Titan's south pole entered the perpetual darkness of polar winter. Soon after, ...