(Press-News.org) CAMBRIDGE, Mass--When someone crumples a sheet of paper, that usually means it's about to be thrown away. But researchers have now found that crumpling a piece of graphene "paper" — a material formed by bonding together layers of the two-dimensional form of carbon — can actually yield new properties that could be useful for creating extremely stretchable supercapacitors to store energy for flexible electronic devices.
The finding is reported in the journal Scientific Reports by MIT's Xuanhe Zhao, an assistant professor of mechanical engineering and civil and environmental engineering, and four other authors. The new, flexible superconductors should be easy and inexpensive to fabricate, the team says.
"Many people are exploring graphene paper: It's a good candidate for making supercapacitors, because of its large surface area per mass," Zhao says. Now, he says, the development of flexible electronic devices, such as wearable or implantable biomedical sensors or monitoring devices, will require flexible power-storage systems.
Like batteries, supercapacitors can store electrical energy, but they primarily do so electrostatically, rather than chemically — meaning they can deliver their energy faster than batteries can. Now Zhao and his team have demonstrated that by crumpling a sheet of graphene paper into a chaotic mass of folds, they can make a supercapacitor that can easily be bent, folded, or stretched to as much as 800 percent of its original size. The team has made a simple supercapacitor using this method as a proof of principle.
The material can be crumpled and flattened up to 1,000 times, the team has demonstrated, without a significant loss of performance. "The graphene paper is pretty robust," Zhao says, "and we can achieve very large deformations over multiple cycles." Graphene, a structure of pure carbon just one atom thick with its carbon atoms arranged in a hexagonal array, is one of the strongest materials known.
To make the crumpled graphene paper, a sheet of the material was placed in a mechanical device that first compressed it in one direction, creating a series of parallel folds or pleats, and then in the other direction, leading to a chaotic, rumpled surface. When stretched, the material's folds simply smooth themselves out.
Forming a capacitor requires two conductive layers — in this case, two sheets of crumpled graphene paper — with an insulating layer in between, which in this demonstration was made from a hydrogel material. Like the crumpled graphene, the hydrogel is highly deformable and stretchable, so the three layers remain in contact even while being flexed and pulled.
Though this initial demonstration was specifically to make a supercapacitor, the same crumpling technique could be applied to other uses, Zhao says. For example, the crumpled graphene material might be used as one electrode in a flexible battery, or could be used to make a stretchable sensor for specific chemical or biological molecules.
INFORMATION:
The research team also included Jianfeng Zang at Huazhong University of Science and Technology and Changyang Cao, Yaying Feng, and Jie Liu at Duke University. The work was supported by the Office of Naval Research, the National Science Foundation, and the National 1000 Talents Program of China.
October 3, 2014 – Children who require long-term parenteral nutrition are at risk of a potentially devastating complication called intestinal failure-associated liver disease (IAFLD). The diagnosis, prevention, and treatment of IAFLD are discussed in a new position paper in the Journal of Pediatric Gastroenterology and Nutrition, official journal of the European Society for Paediatric Gastroenterology, Hepatology and Nutrition (ESPGHAN) and the North American Society for Pediatric Gastroenterology, Hepatology and Nutrition. The journal is published by Lippincott Williams ...
TORONTO, October 3, 2014 – Ache, agony, distress and pain draw more attention than non-pain related words when it comes to people who suffer from chronic pain, a York University research using state-of-the-art eye-tracking technology has found.
"People suffering from chronic pain pay more frequent and longer attention to pain-related words than individuals who are pain-free," says Samantha Fashler, a PhD candidate in the Faculty of Health and the lead author of the study. "Our eye movements — the things we look at — generally reflect what we attend to, and knowing how ...
Previously undiscovered secrets of how human cells interact with a bacterium which causes a serious human disease have been revealed in new research by microbiologists at The University of Nottingham.
The scientists at the University's Centre for Biomolecular Sciences have shed new light on how two proteins found on many human cells are targeted by the human pathogen Neisseria meningitidis which can cause life-threatening meningitis and septicaemia.
The proteins, laminin receptor (LAMR1) and galectin-3 (Gal-3) are found in and on the surface of many human cells. Previous ...
The world's fiber-optic network spans more than 550,000 miles of undersea cable that transmits e-mail, websites, and other packets of data between continents, all at the speed of light. A rip or tangle in any part of this network can significantly slow telecommunications around the world.
Now engineers at MIT, along with computer scientists at Columbia University, have developed a method that predicts the pattern of coils and tangles that a cable may form when deployed onto a rigid surface. The research combined laboratory experiments with custom-designed cables, computer-graphics ...
By creating a global database an international consortium of scientists has increased the detailed knowledge of the variation in the cattle genome by several orders of magnitude. The first generation of the new data resource, which will be open access, forms an essential tool for scientists working with cattle genetics and livestock history. The results are published in an article in the prestigious scientific journal Nature Genetics.
It's momentous, says one of the scientists behind the international effort, associate professor Bernt Guldbrandtsen from the Center for ...
A team of researchers from the Massachusetts Institute of Technology (MIT) in Cambridge, MA have demonstrated a novel automated fabrication process consisting of a three-step sol-gel extrusion, structure freezing and drying, and mechanical drawing process which results in production of highly aligned polymer films. Alignment of molecular chains within polymers is a desirable trait for many applications as it results in superior mechanical and thermal properties in the polymeric materials. Although these highly aligned polymer films (HAPFs) are in demand, previous fabrication ...
When you take a shower and rinse the soap and shampoo off your body, the foam conveniently disappears between your toes and down the drain. Have you ever thought about what happens to the surfactants afterwards? Whether they seep into the groundwater, lakes and streams, where they could pose a risk to fish and frogs?
Not likely. This is shown in a new and very comprehensive report of the potential impact on the environment of the enormous amounts of common surfactants used day in and day out by consumers all over the world.
"We humans use several million tons of ...
Microfluidic tools for precision measurements of cell migration speed reveal that migratory speed of individual cells changes stochastically from parent cells to their descendants, while the average speed of the cell population remains constant through successive generations.
A team of researchers at the Massachusetts General Hospital and Harvard Medical School in Boston has developed technologies for precision measurement of cell migration speed before and applied the new tool to study the variations of migration speed in population of cancer cells. This tool enabled ...
Scientists at the University of Granada, in collaboration with La Paz University Hospital in Madrid and the University of Texas, San Antonio in the US have demonstrated through several experiments conducted on Zucker obese rats that chronic consumption of melatonine helps combat obesity and diabetes mellitus type two.
Their research has confirmed that chronic administration of melatonine in young obese rats with diabetes mellitus type two, similar to its human equivalent, improves mitochondrial dysfunction (i.e. mitochondrial homeostatic functions) in a very efficient ...
Social network analysis could improve knowledge sharing in the healthcare sector, according to research results published in the International Journal of Collaborative Enterprise.
Elizabeth Cudney, Steven Corns and Suzanna Long in the department of Engineering Management and Systems Engineering at Missouri University of Science and Technology, in Rolla, Missouri, USA, explain how knowledge management systems (KMS) can be critical in capturing, retaining and communicating project results and staff knowledge. They can prevent knowledge drain and provide training as "lessons ...