INFORMATION:
The study's lead author is Micaela Chan, a graduate student at UT Dallas and member of Wig's lab at CVL. Additional co-authors of the paper are UT Dallas' Dr. Denise C. Park, director of research at CVL, and Neil K. Savalia, a research assistant in Wig's lab, and Dr. Steven Petersen of Washington University in St. Louis. Funding for the study and the DLBS comes from the National Institute on Aging, part of the National Institutes of Health (grant number 5R37AG-006265-30).
UT Dallas neuroscientists offer novel insight on brain networks
2014-11-03
(Press-News.org) New research from the Center for Vital Longevity (CVL) at UT Dallas offers a different approach for looking at the way the brain operates on a network level, and could eventually lead to new clinical diagnostic criteria for age-related memory disorders.
The latest findings, published the week of Nov. 3 in the online early edition of the Proceedings of the National Academy of Sciences, focus on how brain areas communicate with one another to form brain networks, and how brain networks may change as we age.
"Brain networks consist of groups of highly interactive nodes, not much different than social and technological networks," said Dr. Gagan Wig, an assistant professor in the School of Behavioral and Brain Sciences at UT Dallas. "These nodes all communicate with one another in a large-scale brain network. A considerable amount of research has highlighted how older adults use different brain areas than younger adults when performing the same tasks. What the current approach offers is an evaluation of these differences in a broader context. By studying the brain as a network, we are in a sense adjusting our perspective – akin to examining the patterns that make up constellations of stars instead of focusing on each of the individual stars."
Wig and his colleagues examined how brain networks are composed of segregated sub-networks that mediate specialized functions. They found that increasing age is associated with decreased segregation of brain sub-networks. In addition, they found that less segregation among sub-networks predicts poor long-term memory, regardless of age.
"Because the degree of segregation of individuals' networks relates to memory ability, measuring an individual's network segregation may eventually help lead to clinical measures that could predict pathological decline," Wig said.
The findings stem from data collected by the center's Dallas Lifespan Brain Study, where healthy adults aged 20 to 89 completed cognitive assessments and resting-state functional MRI scans (i.e., participants were not doing a task during the scan), which allowed measurement of brain connectivity. A total of 210 adults were scanned and given cognitive assessments.
The data showed that brain networks in younger persons exhibit many intra-network connections for specialized processing of specific tasks, while actually having sparser inter-network connections that aid communication between networks, keeping them distinct. But the picture blurs as we age, with the brain network becoming progressively less specialized and less segregated between networks, Wig says.
In order to create a new measure of interconnectivity and efficiency on a global scale, Wig's lab used an area of mathematics called graph theory to characterize the segregation of brain networks. This approach has been used to study social networks such as Facebook, the Internet, the flow of public transportation, disease transmission, and even outbreaks of contagion.
ELSE PRESS RELEASES FROM THIS DATE:
Climate change: Limiting short-lived pollutants cannot buy time on CO2 mitigation
2014-11-03
Targeting emissions of non-CO2 gases and air pollutants with climate effects might produce smaller benefits for long-term climate change than previously estimated, according to a new integrated study of the potential of air pollution and carbon dioxide mitigation.
High hopes have been placed on limiting emissions of so-called short-lived climate forcers (SLCF) such as methane and soot for protecting human health, vegetation and limiting temperature increase.
These emissions originate from a broad variety of sources, including diesel engines, stoves, cows, and coal mines. ...
Variations in ice sheet height influence global climate
2014-11-03
In a study published today in PNAS, Dr William Roberts of Bristol's School of Geographical Sciences and colleagues use computer models to simulate a Heinrich event in Hudson Bay, Canada, adjusting the models to consider freshwater influx only, changing ice sheet height only or both factors together.
Dr Roberts said: "There's lots of evidence to suggest that changing the height of the ice sheets could change atmospheric circulation or even ocean circulation but the role this forcing might play during Heinrich events has generally been overlooked. Our study aimed to ...
Putting batteries in a kidsafe coat of armor
2014-11-03
A Brigham and Women's Hospital (BWH) led team has developed a simple "coat of armor" to encase small batteries, rendering them harmless if they are ever swallowed. Children, particularly infants and young toddlers, can ingest these batteries, leading to serious damage to their esophagus as well as other gut tissue, and sometimes, death. Such incidents are on the rise, yet up until now, no solutions have been directed at the battery itself. The new work, published online November 3, 2014 in the Proceedings of the National Academy of Sciences, offers a simple, cost-effective ...
New tool could help reshape the limits of synthetic biology
2014-11-03
Note: A graphic of the "telomerator" being inserted into a circular synthetic chromosome is available at: https://nyumc.box.com/s/zpticyfat5479vcnl9y8
NYU Langone yeast geneticists report they have developed a novel tool — dubbed "the telomerator" — that could redefine the limits of synthetic biology and advance how successfully living things can be engineered or constructed in the laboratory based on an organism's genetic, chemical base-pair structure.
Synthetic biologists aim to use such "designer" microorganisms to produce novel medicines, nutrients, ...
No quick fix for global warming
2014-11-03
When fossil fuels are burned, other climate-forcing gases are produced in addition to long-lasting carbon dioxide. Diesel combustion in vehicles or coal in power plants creates soot particles, which also contribute to global warming, albeit only briefly as they disappear quickly from the atmosphere. Short-lived climate pollutants (also known as Short Lived Climate Forcers or SLCF) caused by human activities include methane and sulphur dioxide, and to a lesser extent fluorocarbons. They all have a measurable impact on the climate.
Politicians and industry have been considering ...
Berkeley Lab scientists ID new driver behind Arctic warming
2014-11-03
Scientists have identified a mechanism that could turn out to be a big contributor to warming in the Arctic region and melting sea ice.
The research was led by scientists from the US Department of Energy's Lawrence Berkeley National Laboratory (Berkeley Lab). They studied a long-wavelength region of the electromagnetic spectrum called far infrared. It's invisible to our eyes but accounts for about half the energy emitted by the Earth's surface. This process balances out incoming solar energy.
Despite its importance in the planet's energy budget, it's difficult to measure ...
Story tips from the Department of Energy's Oak Ridge National Laboratory, November 2014
2014-11-03
SOLAR – Made to order ...
With the addition of a dash of a common solvent, researchers realized an efficiency gain of about 36 percent for organic solar cells. A team led by Oak Ridge National Laboratory's Kai Xiao added diiodooctane -- 3 percent of the weight of the entire solution -- to a blend of polymers and fullerene derivatives and saw the cell's power conversion efficiency jump from 4.5 percent to 7.1 percent. An added benefit is that the technique requires no additional processing, which means lower costs and higher production efficiency. While similar efficiency ...
How a giant impact formed asteroid Vesta's 'belt'
2014-11-03
PROVIDENCE, R.I. [Brown University] — When NASA's Dawn spacecraft visited the asteroid Vesta in 2011, it showed that deep grooves that circle the asteroid's equator like a cosmic belt were probably caused by a massive impact on Vesta's south pole. Now, using a super high-speed cannon at NASA's Ames Research Center, Brown University researchers have shed new light on the violent chain of events deep in Vesta's interior that formed those surface grooves, some of which are wider than the Grand Canyon.
"Vesta got hammered," said Peter Schultz, professor of earth, environmental, ...
Groundwater patches play important role in forest health, water quality
2014-11-03
Even during summer dry spells, some isolated patches of soil in forested watersheds remain waterlogged.
These patches act as hot spots of microbial activity that remove nitrogen from groundwater and return it to the atmosphere, researchers from several institutions, including Virginia Tech, report in a leading scientific journal.
The discovery provides insight into the health of a forest. Nitrogen is an important nutrient for plant growth and productivity, but in streams, it can be a pollutant.
"The importance of these fragmented patches of saturated soil and their ...
NSAIDs prevent colon cancer by inducing death of intestinal stem cells that have mutation
2014-11-03
PITTSBURGH, Nov. 3, 2014 – Aspirin and other nonsteroidal anti-inflammatory drugs (NSAIDs) protect against the development of colorectal cancer by inducing cell suicide pathways in intestinal stem cells that carry a certain mutated and dysfunctional gene, according to a new study led by researchers at the University of Pittsburgh Cancer Institute (UPCI) and the School of Medicine. The findings were published online today in the Proceedings of the National Academy of Sciences.
Scientists have long known from animal studies and clinical trials that use of NSAIDs, such ...