PRESS-NEWS.org - Press Release Distribution
PRESS RELEASES DISTRIBUTION

Re-learning how to read a genome

Study suggests a unified model for how DNA is read, offering insight into how genes evolve

Re-learning how to read a genome
2014-11-10
(Press-News.org) Cold Spring Harbor, NY - There are roughly 20,000 genes and thousands of other regulatory "elements" stored within the three billion letters of the human genome. Genes encode information that is used to create proteins, while other genomic elements help regulate the activation of genes, among other tasks. Somehow all of this coded information within our DNA needs to be read by complex molecular machinery and transcribed into messages that can be used by our cells.

Usually, reading a gene is thought to be a lot like reading a sentence. The reading machinery is guided to the start of the gene by various sequences in the DNA - the equivalent of a capital letter - and proceeds from left to right, DNA letter by DNA letter, until it reaches a sequence that forms a punctuation mark at the end. The capital letter and punctuation marks that tell the cell where, when, and how to read a gene are known as regulatory elements.

But scientists have recently discovered that genes aren't the only messages read by the cell. In fact, many regulatory elements themselves are also read and transcribed into messages, the equivalent of pronouncing the words "capital letter," "comma," or "period." Even more surprising, genes are read bi-directionally from so-called "start sites" - in effect, generating messages in both forward and backward directions.

With all these messages, how does the cell know which one encodes the information needed to make a protein? Is there something different about the reading process at genes and regulatory elements that helps avoid confusion? New research, published today in Nature Genetics, has revealed that the initial steps of the reading process itself are actually remarkably similar at both genes and regulatory elements. The main differences seem to occur after this initial step, in the length and stability of the messages. Gene messages are long and stable enough to ensure that genes becomes proteins, whereas regulatory messages are short and unstable, and are rapidly "cleaned up" by the cell.

To make the distinction, the team, which was co-led by CSHL Professor Adam Siepel and Cornell University Professor John Lis, looked for differences between the initial reading processes at genes and a set of regulatory elements called enhancers. "We took advantage of highly sensitive experimental techniques developed in the Lis lab to measure newly made messages in the cell," says Siepel. "It's like having a new, more powerful microscope for observing the process of transcription as it occurs in living cells."

Remarkably, the team found that the reading patterns for enhancer and gene messages are highly similar in many respects, sharing a common architecture. "Our data suggests that the same basic reading process is happening at genes and these non-genic regulatory elements," explains Siepel. "This points to a unified model for how DNA transcription is initiated throughout the genome."

Working together, the biochemists from Lis's laboratory and the computer jockeys from Siepel's group carefully compared the patterns at enhancers and genes, combining their own data with vast public data sets from the NIH's Encyclopedia of DNA Elements (ENCODE) project. "By many different measures, we found that the patterns of transcription initiation are essentially the same at enhancers and genes," says Siepel. "Most RNA messages are rapidly targeted for destruction, but the messages at genes that are read in the right direction - those destined to be a protein - are spared from destruction." The team was able to devise a model to mathematically explain the difference between stable and unstable transcripts, offering insight into what defines a gene. According to Siepel, "Our analysis shows that the 'code' for stability is, in large part, written in the DNA, at enhancers and genes alike."

This work has important implications for the evolutionary origins of new genes, according to Siepel. "Because DNA is read in both directions from any start site, every one of these sites has the potential to generate two protein-coding genes with just a few subtle changes. The genome is full of potential new genes."

INFORMATION:

This work was supported by the National Institutes of Health.

"Analysis of transcription start sites from nascent RNA identifies a unified architecture of initiation regions at mammalian promoters and enhancers." appears online in Nature Genetics on November 10, 2014. The authors are: Leighton Core, André Martins, Charles Danko, Colin Waters, Adam Siepel, and John Lis. The paper can be obtained online at: http://dx.doi.org/10.1038/ng.3142

About Cold Spring Harbor Laboratory Founded in 1890, Cold Spring Harbor Laboratory (CSHL) has shaped contemporary biomedical research and education with programs in cancer, neuroscience, plant biology and quantitative biology. CSHL is ranked number one in the world by Thomson Reuters for the impact of its research in molecular biology and genetics. The Laboratory has been home to eight Nobel Prize winners. Today, CSHL's multidisciplinary scientific community is more than 600 researchers and technicians strong and its Meetings & Courses program hosts more than 12,000 scientists from around the world each year to its Long Island campus and its China center. For more information, visit http://www.cshl.edu.


[Attachments] See images for this press release:
Re-learning how to read a genome

ELSE PRESS RELEASES FROM THIS DATE:

Thousands of never-before-seen human genome variations uncovered

Thousands of never-before-seen human genome variations uncovered
2014-11-10
Thousands of never-before-seen genetic variants in the human genome have been uncovered using a new genome sequencing technology. These discoveries close many human genome mapping gaps that have long resisted sequencing. The technique, called single-molecule, real-time DNA sequencing (SMRT), may now make it possible for researchers to identify potential genetic mutations behind many conditions whose genetic causes have long eluded scientists, said Evan Eichler, professor of genome sciences at the University of Washington, who led the team that conducted the study. "We ...

Statins reverse learning disabilities caused by genetic disorder

Statins reverse learning disabilities caused by genetic disorder
2014-11-10
UCLA neuroscientists discovered that statins, a popular class of cholesterol drugs, reverse the learning deficits caused by a mutation linked to a common genetic cause of learning disabilities. Published in the Nov. 10 advance online edition of Nature Neuroscience, the findings were studied in mice genetically engineered to develop the disease, called Noonan syndrome. The disorder can disrupt a child's development in many ways, often causing unusual facial features, short stature, heart defects and developmental delays. No treatment is currently available. "Noonan ...

A greasy way to take better protein snapshots

2014-11-10
Thanks to research performed at RIKEN's SACLA x-ray free electron laser facility in Japan, the dream of analyzing the structure of large, hard-to-crystallize proteins and other bio molecules has come one step closer to reality. In the study published in Nature Methods, researchers used a newly developed grease to suspend small crystals of lysozyme, glucose isomerase, thaumatin, and fatty acid-binding protein type-3, which they then analyzed using the revolutionary serial femtosecond crystallography method. Crystallography, which was first performed just a century ago, ...

Heat transfer sets the noise floor for ultrasensitive electronics

Heat transfer sets the noise floor for ultrasensitive electronics
2014-11-10
A team of engineers and scientists has identified a source of electronic noise that could affect the functioning of instruments operating at very low temperatures, such as devices used in radio telescopes and advanced physics experiments. The findings, detailed in the November 10 issue of the journal Nature Materials, could have implications for the future design of transistors and other electronic components. The electronic noise the team identified is related to the temperature of the electrons in a given device, which in turn is governed by heat transfer due to packets ...

For enterics, adaptability could be an Achilles heel

2014-11-10
In research published in Nature Chemical Biology, scientists from RIKEN in Japan have discovered a surprisingly simple mechanism through which enterics can adjust to the very different oxygen environments inside the human gut and outside. This research, which was led by Shigeyuki Yokoyama and Wataru Nishii of the Structural Biology Laboratory, opens a new potential target against these bacteria, which are the most-frequently encountered causative microorganisms of infectious diseases. The family includes well-known symbionts and facultative or obligate pathogens such as ...

Kīlauea, 1790 and today

2014-11-10
Boulder, Colo., USA - Scores of people were killed by an explosive eruption of Kīlauea Volcano, Hawai'i, in 1790. Research presented in GSA Bulletin by D.A. Swanson of the Hawaiian Volcano Observatory and colleagues suggests that most of the fatalities were caused by hot, rapidly moving surges of volcanic debris and steam that engulfed the victims. Deposits of such surges occur on the surface on the west summit area and cover an ash bed indented with human footprints. The footprints, made by warriors and their families, appear along a major trail in use at the time. ...

Researchers discover new target for blood cancer treatment

2014-11-10
Scientists at the University of York have identified a therapeutic target which could lead to the development of new treatments for specific blood cancers. The study, by researchers from the Centre for Immunology and Infection at York working with scientists in the Department of Medicine at Stony Brook University in the USA, could lead to improved therapies for a group of haematological cancers called myeloproliferative neoplasms (MPNs). These are characterised by increases in one or more blood cell types, usually red blood cells, which carry oxygen around the body ...

Anxiety can damage brain

2014-11-10
Toronto, Canada - People with mild cognitive impairment (MCI) are at increased risk of converting to Alzheimer's disease within a few years, but a new study warns the risk increases significantly if they suffer from anxiety. The findings were reported on Oct. 29 online by The American Journal of Geriatric Psychiatry, ahead of print publication, scheduled for May 2015. Led by researchers at Baycrest Health Sciences' Rotman Research Institute, the study has shown clearly for the first time that anxiety symptoms in individuals diagnosed with MCI increase the risk of a ...

Rhode Island, Miriam hospitals, other researchers: Opioid OD cause for over 100,000 ED visits in '10

2014-11-10
PROVIDENCE, R.I. - Researchers from Rhode Island and The Miriam hospitals and the Stanford University School of Medicine have found that prescription opioids, including methadone, were involved in 67.8 percent of (or over 135,971 visits to) nationwide emergency department (ED) visits in 2010, with the highest proportion of opioid overdoses occurring in the South. Additionally, several concurrent health conditions were identified as common among overdose victims. These include chronic respiratory diseases and mental health/mood disorders -suggesting that opioids should ...

Mothers' education significant to children's academic success

2014-11-10
ANN ARBOR--A mother knows best--and the amount of education she attains can predict her children's success in reading and math. In fact, that success is greater if she had her child later in life, according to a new University of Michigan study. Sandra Tang, a U-M psychology research fellow and the study's lead author, said children of mothers 19 and older usually enter kindergarten with higher levels of achievement. These kids continue to excel in math and reading at higher levels through eighth grade when compared to children of mothers 18 and younger. "These results ...

LAST 30 PRESS RELEASES:

Osteoporosis treatment benefits people older than 80

Consuming more protein may protect patients taking anti-obesity drug from muscle loss

Thyroid treatment may improve gut health in people with hypothyroidism

Combination of obesity medication tirzepatide and menopause hormone therapy fuels weight loss

High blood sugar may have a negative impact on men’s sexual health

Emotional health of parents tied to well-being of children with growth hormone deficiency

Oxytocin may reduce mood changes in women with disrupted sleep

Mouse study finds tirzepatide slowed obesity-associated breast cancer growth

CMD-OPT model enables the discovery of a potent and selective RIPK2 inhibitor as preclinical candidate for the treatment of acute liver injury

Melatonin receptor 1a alleviates sleep fragmentation-aggravated testicular injury in T2DM by suppression of TAB1/TAK1 complex through FGFR1

Single-cell RNA sequencing reveals Shen-Bai-Jie-Du decoction retards colorectal tumorigenesis by regulating the TMEM131–TNF signaling pathway-mediated differentiation of immunosuppressive dendritic ce

Acta Pharmaceutica Sinica B Volume 15, Issue 7 Publishes

New research expands laser technology

Targeted radiation offers promise in patients with metastasized small cell lung cancer to the brain

A high clinically translatable strategy to anti-aging using hyaluronic acid and silk fibroin co-crosslinked hydrogels as dermal regenerative fillers

Mount Sinai researchers uncover differences in how males and females change their mind when reflecting on past mistakes

CTE and normal aging are difficult to distinguish, new study finds

Molecular arms race: How the genome defends itself against internal enemies

Tiny chip speeds up antibody mapping for faster vaccine design

KTU experts reveal why cultural heritage is important for community unity

More misfolded proteins than previously known may contribute to Alzheimer’s and dementia

“Too much going on”: Autistic adults overwhelmed by non-verbal social cues

What’s driving America’s deep freezes in a warming world?

A key role of brain protein in learning and memory is deciphered by scientists

Heart attacks don’t follow a Hollywood script

Erin M. Schuman wins 2026 Nakasone Award for discovery on neural synapse function and change during formation of memories

Global ocean analysis could replace costly in-situ sound speed profiles in seafloor positioning, study finds

Power in numbers: Small group professional coaching reduces rates of physician burnout by nearly 30%

Carbon capture, utilization, and storage: A comprehensive review of CCUS-EOR

New high-temperature stable dispersed particle gel for enhanced profile control in CCUS applications

[Press-News.org] Re-learning how to read a genome
Study suggests a unified model for how DNA is read, offering insight into how genes evolve