(Press-News.org) Mouse cells and tissues created through nuclear transfer can be rejected by the body because of a previously unknown immune response to the cell's mitochondria, according to a study in mice by researchers at the Stanford University School of Medicine and colleagues in Germany, England and at MIT.
The findings reveal a likely, but surmountable, hurdle if such therapies are ever used in humans, the researchers said.
Stem cell therapies hold vast potential for repairing organs and treating disease. The greatest hope rests on the potential of pluripotent stem cells, which can become nearly any kind of cell in the body. One method of creating pluripotent stem cells is called somatic cell nuclear transfer, and involves taking the nucleus of an adult cell and injecting it into an egg cell from which the nucleus has been removed.
The promise of the SCNT method is that the nucleus of a patient's skin cell, for example, could be used to create pluripotent cells that might be able to repair a part of that patient's body. "One attraction of SCNT has always been that the genetic identity of the new pluripotent cell would be the same as the patient's, since the transplanted nucleus carries the patient's DNA," said cardiothoracic surgeon Sonja Schrepfer, MD, PhD, a co-senior author of the study, which will be published online Nov. 20 in Cell Stem Cell.
"The hope has been that this would eliminate the problem of the patient's immune system attacking the pluripotent cells as foreign tissue, which is a problem with most organs and tissues when they are transplanted from one patient to another," added Schrepfer, who is a visiting scholar at Stanford's Cardiovascular Institute. She is also a Heisenberg Professor of the German Research Foundation at the University Heart Center in Hamburg, and at the German Center for Cardiovascular Research.
Possibility of rejection
A dozen years ago, when Irving Weissman, MD, professor of pathology and of developmental biology at Stanford, headed a National Academy of Sciences panel on stem cells, he raised the possibility that the immune system of a patient who received SCNT-derived cells might still react against the cells' mitochondria, which act as the energy factories for the cell and have their own DNA. This reaction could occur because cells created through SCNT contain mitochondria from the egg donor and not from the patient, and therefore could still look like foreign tissue to the recipient's immune system, said Weissman, the other co-senior author of the paper. Weissman is the Virginia and D.K. Ludwig Professor for Clinical Investigation in Cancer Research and the director of the Stanford Institute for Stem Cell Biology and Regenerative Medicine.
That hypothesis was never tested until Schrepfer and her colleagues took up the challenge. "There was a thought that because the mitochondria were on the inside of the cell, they would not be exposed to the host's immune system," Schrepfer said. "We found out that this was not the case."
Schrepfer, who heads the Transplant and Stem Cell Immunobiology Laboratory in Hamburg, used cells that were created by transferring the nuclei of adult mouse cells into enucleated eggs cells from genetically different mice. When transplanted back into the nucleus donor strain, the cells were rejected although there were only two single nucleotide substitutions in the mitochondrial DNA of these SCNT-derived cells compared to that of the nucleus donor. "We were surprised to find that just two small differences in the mitochondrial DNA was enough to cause an immune reaction," she said.
"We didn't do the experiment in humans, but we assume the same sort of reaction could occur," Schrepfer added.
Until recently, researchers were able to perform SCNT in many species, but not in humans. When scientists at the Oregon Health and Science University announced success in performing SCNT with human cells last year, it reignited interest in eventually using the technique for human therapies. Although many stem cell researchers are focused on a different method of creating pluripotent stem cells, called induced pluripotent stem cells, there may be some applications for which SCNT-derived pluripotent cells are better suited.
Handling the reaction
The immunological reactions reported in the new paper will be a consideration if clinicians ever use SCNT-derived stem cells in human therapy, but such reactions should not prevent their use, Weissman said. "This research informs us of the margin of safety that would be required if, in the distant future, we need to use SCNT to create pluripotent cells to treat someone," he said. "In that case, clinicians would likely be able to handle the immunological reaction using the immunosuppression methods that are currently available."
In the future, scientists might also lessen the immune reaction by using eggs from someone who is genetically similar to the recipient, such as a mother or sister, Schrepfer added.
INFORMATION:
The other Stanford co-author of the paper is Robert Robbins, MD, former professor of cardiothoracic surgery. Additional co-authors are from the University Heart Center in Hamburg, the Cardiovascular Research Center Hamburg, the German Center for Cardiovascular Research, the Whitehead Institute for Biomedical Research at the Massachusetts Institute of Technology and Newcastle University in the United Kingdom.
The research was funded by the Else-Kröner-Fresenius-Stiftung Foundation, the Leducq Foundation and the German Research Foundation. Information about Stanford's Department of Cardiothoracic Surgery, which also supported the work, is available at http://ctsurgery.stanford.edu
The Stanford University School of Medicine consistently ranks among the nation's top medical schools, integrating research, medical education, patient care and community service. For more news about the school, please visit http://med.stanford.edu/school.html. The medical school is part of Stanford Medicine, which includes Stanford Health Care and Lucile Packard Children's Hospital Stanford. For information about all three, please visit http://med.stanford.edu.
Print media contact: Krista Conger at (650) 725-5371 (kristac@stanford.edu)
Broadcast media contact: Margarita Gallardo at (650) 723-7897 (mjgallardo@stanford.edu)
A recently discovered protein complex known as STING plays a crucial role in detecting the presence of tumor cells and promoting an aggressive anti-tumor response by the body's innate immune system, according to two separate studies published in the Nov. 20 issue of the journal Immunity.
The studies, both from University of Chicago-based research teams, have major implications for the growing field of cancer immunotherapy. The findings show that when activated, the STING pathway triggers a natural immune response against the tumor. This includes production of chemical ...
Say you ignored one of those "this website is not trusted" warnings and it led to your computer being hacked. How would you react? Would you:
A. Quickly shut down your computer?
B. Yank out the cables?
C. Scream in cyber terror?
For a group of college students participating in a research experiment, all of the above were true. These gut reactions (and more) happened when a trio of Brigham Young University researchers simulated hacking into study participants' personal laptops.
"A lot of them freaked out--you could hear them audibly make noises from our observation ...
November 20, 2014, Chicago, IL - A team of researchers led by Ludwig Chicago's Yang-Xin Fu and Ralph Weichselbaum has uncovered the primary signaling mechanisms and cellular interactions that drive immune responses against tumors treated with radiotherapy. Published in the current issue of Immunity, their study suggests novel strategies for boosting the effectiveness of radiotherapy, and for combining it with therapies that harness the immune system to treat cancer.
"Much of the conversation about the mechanisms by which radiation kills cancer cells has historically focused ...
BOSTON -- Epithelial ovarian cancer is the most lethal cancer of the female reproductive organs, with more than 200,000 new cases and more than 125,000 deaths each year worldwide. Because symptoms tend to be vague, 80 percent of these cancers are not recognized until the disease has advanced and spread to other parts of the body. The standard treatment for advanced ovarian cancer includes high-dose chemotherapy, which often results in debilitating side effects and for which the five-year survival rate is only 35 percent.
Now new research in an animal model finds that ...
CORVALLIS, Ore. - Researchers from Oregon State University and other institutions have developed a new biomarker called "SDMA" that can provide earlier identification of chronic kidney disease in cats, which is one of the leading causes of their death.
A new test based on this biomarker, when commercialized, should help pet owners and their veterinarians watch for this problem through periodic checkups, and treat it with diet or other therapies to help add months or years to their pet's life.
Special diets have been shown to slow the progression of this disease once ...
RIVERSIDE, Calif. - How do galaxies like our Milky Way form, and just how do they evolve? Are galaxies affected by their surrounding environment? An international team of researchers, led by astronomers at the University of California, Riverside, proposes some answers.
The researchers highlight the role of the "cosmic web" - a large-scale web-like structure comprised of galaxies - on the evolution of galaxies that took place in the distant universe, a few billion years after the Big Bang. In their paper, published Nov. 20 in the Astrophysical Journal, they present observations ...
BOSTON (Nov. 20, 2014) Investigators at Massachusetts Eye and Ear and Harvard Medical School Department of Ophthalmology and colleagues reported the development and characterization of a comprehensive genetic test for inherited eye disorders in the online version of the Nature journal Genetics In Medicine today. The Genetic Eye Disease (GEDi) test includes all of the genes known to harbor mutations that cause inherited retinal degenerations, optic atrophy and early onset glaucoma. These disorders are important causes of vision loss, and genetic treatments such as gene ...
DURHAM, N.C. -- Displaced political aides looking for a new, nonpartisan job in the wake of the midterm power shuffle may fare better if they tone down any political references on their resumes, finds a new study from Duke University.
The study found that applicants who shared the minority partisan view of voters where a resume was sent were less likely to receive a callback from an employer than a candidate with a neutral resume.
Sharing information in line with the majority partisan view didn't give candidates an advantage, however.
"Our results showed that individuals ...
A new study from UNC's Frank Porter Graham Child Development Institute (FPG) reveals that disruptions in child care negatively affect children's social development as early as age 4. However, the study also shows that the effects of child care instability are not unduly large--and some types of instability appear to have no negative impact on children.
"Our findings showed that when young children moved between child care settings, these transitions negatively affected their social adjustment," said FPG investigator Mary Bratsch-Hines. "But when children had a history ...
The research found that incisor teeth grow quickly in the early stages of the second trimester of a baby's development, while molars grow at a slower rate in the third trimester. This is so incisors are ready to erupt after birth, at approximately six months of age, when a baby makes the transition from breast-feeding to weaning.
Weaning in humans takes place relatively early compared to some primates, such as chimpanzees. As a result, there is less time available for human incisors to form, so the enamel grows rapidly to compensate.
This research can increase our understanding ...