Contact Information:
Laura Bailey
baileylm@umich.edu
734-647-1848
University of Michigan
@umich



Kredyty mieszkaniowe Kredyty mieszkaniowe

Sprawdź aktualny ranking najlepszych kredytów mieszkaniowych w Polsce - atrakcyjne kredytowanie nieruchomości.
PRESS-NEWS.org - Press Release Distribution
FREE PRESS RELEASES DISTRIBUTION
RSS - Press News Release
Add Press Release

Scientists identify bone cells that could help children who need corrective facial surgery


2014-11-24
(Press-News.org) ANN ARBOR--Our bones are smart. Bones know that by adolescence it's time to stop growing longer and stronger, and from that point on bones keep their shape by healing injuries.

This question of why bones grow longer and stronger in children, but stay static in adults--yet retain the ability to heal themselves, has long perplexed scientists in the bone regeneration field. But researchers from the University of Michigan, Kyoto University and Harvard University believe they may have unearthed a big piece of this puzzle.

The team discovered that a certain subset of cartilage-making cells, known as chondrocytes, replicate themselves, make other bone cells and drive bone growth--findings that could lead to new treatments for children with facial deformities who normally have to wait until adulthood for corrective surgery.

The study by Dr. Noriaki Ono, U-M assistant professor of dentistry, and colleagues will appear online Nov. 24 in Nature Cell Biology.

It's long been thought that these chondrocytes die when children reached adolescence and their bones stopped growing, Ono said. However, the fact that bone still heals itself even without chondrocytes caused intense debate among researchers.

Ono's group found that some chondrocytes don't die, but rather transform themselves into other types of bone-growing and bone-healing cells.

"Up until now, the cells that drive this bone growth have not been understood very well. As an orthodontist myself, I have special interest in this aspect, especially for finding a cure for severe bone deformities of the face in children," he said. "If we can find a way to make bones that continue to grow along with the child, maybe we would be able to put these pieces of growing bones back into children and make their faces look much better than they do."

Ono said one of the challenges in the bone and cartilage field is that stem cells haven't really been identified. The only widely accepted idea is that certain stem cells help bones grow and heal, but that's only discussed in the context of adults with bone disorders such as osteoporosis.

Many factors cause craniofacial deformities, and all are devastating to children, he said. In children with Goldenhar syndrome, underdeveloped facial tissues can harm the developing jawbone. Another bone deformity called deformational plagiocephaly causes a child's head to grow asymmetrically.

INFORMATION:

The study is titled "A Subset of Chondrogenic Cells Provides Early Mesenchymal Progenitors in Growing Bones." Co-authors also include: Wanida Ono of the U-M School of Dentistry; Takashi Nagasawa of Kyoto University in Japan; and Henry Kronenberg, of Harvard Medical School and Massachusetts General Hospital.

Study Noriaki Ono U-M School of Dentistry


ELSE PRESS RELEASES FROM THIS DATE:

Drugs to block angiogenesis could provide new treatment for TB

Drugs to block angiogenesis could provide new treatment for TB
2014-11-24
VIDEO: When zebrafish are infected with bright blue Mycobacterium marinum, bright red immune cells quickly surround the bacteria to form tightly organized nuggets called granulomas (vessels green, bacteria blue, immune cells... Click here for more information. DURHAM, N.C. -- The body responds to tuberculosis infection by locking the bacterial offenders into tiny clusters of immune cells called granulomas, which are a hallmark of the disease. This containment strategy succeeds ...

Research reveals how our bodies keep unwelcome visitors out of cell nuclei

Research reveals how our bodies keep unwelcome visitors out of cell nuclei
2014-11-24
The structure of pores found in cell nuclei has been uncovered by a UCL-led team of scientists, revealing how they selectively block certain molecules from entering, protecting genetic material and normal cell functions. The discovery could lead to the development of new drugs against viruses that target the cell nucleus and new ways of delivering gene therapies, say the scientists behind the study. At the heart of every cell in our body is a cell nucleus, a dense structure that contains our DNA. For a cell to function normally, it needs to surround its nucleus with a ...

Underwater robot sheds new light on Antarctic sea ice

Underwater robot sheds new light on Antarctic sea ice
2014-11-24
The first detailed, high-resolution 3-D maps of Antarctic sea ice have been developed using an underwater robot. Scientists from the UK, USA and Australia say the new technology provides accurate ice thickness measurements from areas that were previously too difficult to access. The results, published this week in the journal Nature Geoscience (Monday 24 November 2014), step up the pace of research in the polar regions aimed at understanding the dramatic sea ice changes in the context of climate change. Scientists use a range of technologies and techniques to measure ...

New research discovers gene that reduces risk of stroke

2014-11-24
Scientists have discovered a gene that protects people against one of the major causes of stroke in young and middle-aged adults and could hold the key to new treatments. Researchers from Royal Holloway, University of London, together with an international team from across the United States and Europe, have found that people with a specific variant of a gene, known as PHACTR1, are at reduced risk of suffering cervical artery dissection, which is caused by a tear in an artery that leads to the brain. The new discovery, published in the journal Nature Genetics, could ...

Magnetic fields and lasers elicit graphene secret

Magnetic fields and lasers elicit graphene secret
2014-11-24
Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) have studied the dynamics of electrons from the "wonder material" graphene in a magnetic field for the first time. This led to the discovery of a seemingly paradoxical phenomenon in the material. Its understanding could make a new type of laser possible in the future. Together with researchers from Berlin, France, the Czech Republic and the United States, the scientists precisely described their observations in a model and have now published their findings in the scientific journal Nature Physics. Graphene ...

Excessive contact between cellular organelles disrupts metabolism in obesity

2014-11-24
Boston, MA - Researchers at Harvard School of Public Health (HSPH) have found a novel mechanism causing type 2 diabetes that could be targeted to prevent or treat the disease. The research highlights a previously unrecognized molecular pathway that contributes to the malfunction of liver cells in obesity, leading to insulin resistance and diabetes. The study appears online November 24, 2014 in Nature Medicine. "While it is well-established that obesity generates cellular and molecular stress leading to abnormal functioning of many cellular processes, the mechanisms ...

New device could make large biological circuits practical

2014-11-24
CAMBRIDGE, MA -- Researchers have made great progress in recent years in the design and creation of biological circuits -- systems that, like electronic circuits, can take a number of different inputs and deliver a particular kind of output. But while individual components of such biological circuits can have precise and predictable responses, those outcomes become less predictable as more such elements are combined. A team of researchers at MIT has now come up with a way of greatly reducing that unpredictability, introducing a device that could ultimately allow such ...

Pain in a dish

Pain in a dish
2014-11-24
After more than six years of intensive effort, and repeated failures that made the quest at times seem futile, Harvard Stem Cell Institute (HSCI) researchers at Boston Children's Hospital (BCH) and Harvard's Department of Stem Cell and Regenerative Biology (HSCRB) have successfully converted mouse and human skin cells into pain sensing neurons that respond to a number of stimuli that cause acute and inflammatory pain. This "disease in a dish" model of pain reception may advance the understanding of different types of pain, identify why individuals differ in their pain ...

Masking HIV target cells prevents viral transmission in animal model

2014-11-24
Cloaking immune cells with antibodies that block T cell trafficking to the gut can substantially reduce the risk of viral transmission in a non-human primate model of HIV infection, scientists report. The findings suggest that drugs that are already in clinical trials for inflammatory bowel diseases might be effective in the treatment or prevention of HIV infection. The results are scheduled for publication in Nature Medicine. "We were surprised by the effects that we observed," says senior author Aftab Ansari, PhD, professor of pathology and laboratory ...

Animals steal defenses from bacteria

Animals steal defenses from bacteria
2014-11-24
It's a dog eat dog world, and bacteria have been living in it for a long time. It's of no surprise that bacteria have a sophisticated arsenal to compete with each other for valuable resources in the environment. In 2010, work led by University of Washington Department of Microbiology Associate Professor Joseph Mougous uncovered a weaponry system used in this warfare between bacteria. The combatants inject deadly toxins into rival cells. Now, in a surprising twist, Mougous and colleagues have found that many animals have taken a page from the bacterial playbook. They steal ...

LAST 30 PRESS RELEASES:

How your brain decides blame and punishment -- and how it can be changed

Uniquely human brain region enables punishment decisions

Pinpointing punishment

Chapman University publishes research on attractiveness and mating

E-cigarettes: Special issue from Nicotine & Tobacco Research

Placental problems in early pregnancy associated with 5-fold increased risk of OB & fetal disorders

UT study: Invasive brood parasites a threat to native bird species

Criminals acquire guns through social connections

Restoring ocean health

Report: Cancer remains leading cause of death in US Hispanics

Twin study suggests genetic factors contribute to insomnia in adults

To be fragrant or not: Why do some male hairstreak butterflies lack scent organs?

International team discovers natural defense against HIV

Bolivian biodiversity observatory takes its first steps

Choice of college major influences lifetime earnings more than simply getting a degree

Dominant strain of drug-resistant MRSA decreases in hospitals, but persists in community

Synthetic biology needs robust safety mechanisms before real world application

US defense agencies increase investment in federal synthetic biology research

Robots help to map England's only deep-water Marine Conservation Zone

Mayo researchers identify protein -- may predict who will respond to PD-1 immunotherapy for melanoma

How much water do US fracking operations really use?

New approach to mammograms could improve reliability

The influence of citizen science grows despite some resistance

Unlocking secrets of how fossils form

What happens on the molecular level when smog gets into the lungs?

Using ultrasound to clean medical instruments

Platinum and iron oxide working together get the job done

Tiny silica particles could be used to repair damaged teeth, research shows

A quantum lab for everyone

No way? Charity's logo may influence perception of food in package

[Press-News.org] Scientists identify bone cells that could help children who need corrective facial surgery
Press-News.org is a service of DragonFly Company. All Rights Reserved.
Issuers of news releases are solely responsible for the accuracy of their content.