PRESS-NEWS.org - Press Release Distribution
PRESS RELEASES DISTRIBUTION

Genes tell story of birdsong and human speech

Duke lab co-led massive international gene sequencing effort

Genes tell story of birdsong and human speech
2014-12-11
(Press-News.org) DURHAM, N.C. -- His office is filled with all sorts of bird books, but Duke neuroscientist Erich Jarvis didn't become an expert on the avian family tree because of any particular interest in our feathered friends. Rather, it was his fascination with how the human brain understands and reproduces speech that brought him to the birds.

"We've known for many years that the singing behavior of birds is similar to speech in humans -- not identical, but similar -- and that the brain circuitry is similar, too," said Jarvis, an associate professor of neurobiology at the Duke University Medical School and an investigator at the Howard Hughes Medical Institute. "But we didn't know whether or not those features were the same because the genes were also the same."

Now scientists do know, and the answer is yes -- birds and humans use essentially the same genes to speak.

After a massive international effort to sequence and compare the entire genomes of 48 species of birds representing every major order of the bird family tree, Jarvis and his colleagues found that vocal learning evolved twice or maybe three times among songbirds, parrots and hummingbirds.

Even more striking is that the set of genes involved in each of those song innovations is remarkably similar to the genes involved in human speaking ability.

The findings are part of a package of eight scientific papers in a Dec. 12 special issue of Science and 21 additional papers appearing nearly simultaneously in Genome Biology, GigaScience and other journals. Jarvis' name appears on 20 papers and he is a corresponding author for 8 of them.

Jarvis co-led the Avian Phylogenomics Consortium with Guojie Zhang of the National Genebank at BGI in China and the University of Copenhagen and M. Thomas P. Gilbert of the Natural History Museum of Denmark. His Duke lab contributed to preparing samples, sequencing and annotating the genomes, performing the analyses and coordinating the overall project.

The Jarvis lab in the Bryan Research Building prepared DNA of many of the species, pulling it from little chunks of frozen, pink bird flesh collected over the past 30 years by museums and other institutions around the world. To ensure the DNA being sequenced really belonged to the Golden-collared manakin and not an undergraduate lab assistant, the lab has been kept spotlessly clean and many of its tools are used only once, to avoid the possibility of subsequent contamination.

"We change gloves a lot," said Carole Parent, the lab research analyst who set up a DNA isolation pipeline for the next stage of the project to sequence still more birds and supervised sample prep with a team of Duke undergrads and a student from East Chapel Hill High School.

All of this meticulous and somewhat tedious work has given Jarvis and hundreds of colleagues around the world a crack at an unprecedented amount of genomic data generated by BGI in China. The whole-genome comparison of the 48 bird species required new algorithms written at the University of Illinois and University of Texas that ran for 400 years of CPU time on three supercomputers in the U.S.

Of the 29 papers covering everything from penguin evolution to color vision, eight are devoted to bird song.

One of the Dec. 12 papers in Science found there is a consistent set of just over 50 genes that show higher or lower activity in the brains of vocal learning birds and humans. These changes were not found in the brains of birds that do not have vocal learning and of non-human primates that do not speak, according to this Duke team, which was led by Jarvis; Andreas Pfenning, a graduate of the Ph.D. program in computational biology and bioinformatics (CBB); and Alexander Hartemink, professor of computer science, statistical science and biology.

"This means that vocal learning birds and humans are more similar to each other for these genes in song and speech brain areas than other birds and primates are to them," Jarvis said.

These genes are involved in forming new connections between neurons of the motor cortex and neurons that control the muscles that produce sound.

A companion study by another CBB doctorate, Rui Wang, looked at the specialized activity of a pair of genes involved in the regions of the brain that control song and speech. This study, appearing in the Journal of Comparative Neurology, found that these genes are down- and up-regulated in one brain region of song-learning birds during the juvenile period of their vocal learning , changes that last into adulthood. This study, and that of Pfenning, hypothesize that changes in these genes could be critical for the evolution of song in birds and speech in humans.

"You can find those same genes in the genomes of all species, but they're active at much higher or lower levels in the specialized song or speech brain regions of vocal learning birds and humans," Jarvis said. "What this suggests to me is that when vocal learning evolves, there may be a limited way in which the brain circuits can evolve."

Another paper in Science from Duke, led by post-doc Osceola Whitney, Pfenning, Hartemink and Anne West, an associate professor of neurobiology, looked at gene activation in different areas of the brain during singing. This team found activation of 10 percent of the expressed genome during singing, with diverse activation patterns in different song-learning regions of the brain. The diverse gene patterns are best explained by epigenetic differences in the genomes of the different brain regions, meaning that individual cells in different brain regions can regulate genes at a moment's notice when the birds sing.

Among the three main groups of vocal learning birds, parrots are clearly different in their ability to mimic human speech. Mukta Chakraborty, a postdoc in the Jarvis lab, led a project that used the activity of some of the specialized genes to discover that the parrot's speech center is organized somewhat differently. It has what the researchers call a "song-system-within-a-song-system" in which the area of the brain with different gene activity for producing song has an outer ring of still more differences in gene expression.

Parrots are very social animals, Chakraborty said, and having the ability to quickly pick up "dialects" of parrot speech may account for their super-charged speech center. The "shell" or outer regions were found to be proportionally larger in the parrot species, which are believed to have the highest vocal, cognitive and social abilities. These species include Amazon parrots, the African Grey and the Blue and Gold Macaw.

Jarvis was also part of a team with Claudio Mello and his Ph.D. student Morgan Wirthlin at Oregon Health & Science University that found ten more genes that are unique to song-control regions of songbirds. This paper appears in BMC Genomics.

A paper in Science led by Zhang, Gilbert and Jarvis found the genomes of vocal learners are more rapidly evolving and have more chromosomal rearrangements compared to other bird species. This genomic comparison also found similar changes occurred independently in in the song-learning area of different birds' brains.

Jarvis said knowing more of this history of how speech evolved in birds makes vocal learning birds even more valuable model organisms for helping to answer the questions he and other researchers are addressing about human speech.

"Speech is difficult to study in human brains," he said. "Whales and elephants learn speech and songs, but they're too big to house in the lab. Now that we have a deeper understanding of how similar birdsong brain regions are to human speech regions at the genetic level, I think they'll be a better model than ever."

Jarvis' general exploration of the bird brain over his 16 years at Duke has also led to several unexpected discoveries unrelated to song.

In 2005, he and colleagues found a center of the brain in migratory birds that apparently enables sensing of magnetic fields through "night vision." That year he also led a revision of the understanding of bird brain organization and vertebrate brain evolution. Last year, he led a re-drawing of the geography of the bird brain based on analysis of 52 genes that are active in 23 areas of the brains of eight species of birds. This new map shows neuron groupings in the birds' brains to be organized in columns like the brains of humans and other mammals.

He also branched out a bit and learned about the brain structures that enable mice to "sing" in ultrasonic ranges beyond human hearing.

Jarvis said this first wave of findings from the Avian Phylogenomics Consortium is just the beginning of an exciting new era of genomic analysis. The international group is already sequencing more birds at the whole-genome level.

"This is an exciting moment," said Jarvis, who is also a member of the Duke Institute for Brain Sciences. "Lots of fundamental questions now can be resolved with more genomic data from a broader sampling. I got into this project because of my interest in birds as a model for vocal learning and speech production in humans, and it has opened up some amazing new vistas on brain evolution."

INFORMATION:


[Attachments] See images for this press release:
Genes tell story of birdsong and human speech

ELSE PRESS RELEASES FROM THIS DATE:

Cells can use dynamic patterns to pluck signals from noise

Cells can use dynamic patterns to pluck signals from noise
2014-12-11
VIDEO: A microscopy system continuously measures responses to signaling chemicals in thousands of cells at a time. Click here for more information. Scientists have discovered a general principle for how cells could accurately transmit chemical signals despite high levels of noise in the system, they report in Science this week. A cell's response to outside chemical signals depends on its physiological state, which can fluctuate considerably. Amounts of different kinds ...

Scientists measure speedy electrons in silicon

Scientists measure speedy electrons in silicon
2014-12-11
The entire semiconductor industry, not to mention Silicon Valley, is built on the propensity of electrons in silicon to get kicked out of their atomic shells and become free. These mobile electrons are routed and switched though transistors, carrying the digital information that characterizes our age. An international team of physicists and chemists based at the University of California, Berkeley, has for the first time taken snapshots of this ephemeral event using attosecond pulses of soft x-ray light lasting only a few billionths of a billionth of a second. While ...

New method helps map species' genetic heritage

2014-12-11
CHAMPAIGN, Ill. - Where did the songbird get its song? What branch of the bird family tree is closer to the flamingo - the heron or the sparrow? These questions seem simple, but are actually difficult for geneticists to answer. A new, sophisticated statistical technique developed by researchers at the University of Illinois and the University of Texas at Austin can help researchers construct more accurate species trees detailing the lineage of genes and the relationships between species. The method, called statistical binning, was used in the Avian Phylogenetics Project, ...

Genomic analysis, key to understanding bird evolution

2014-12-11
This news release is available in Spanish. 66 million years ago, the dinosaurs, as we think about them, became extinct, but certain reptiles and birds survived this mass extinction. The birds that survived experienced rapid evolution and diversification. Until now, explaining the family tree of modern birds has been a difficult and controversial subject amongst scientists. Thanks to the research of an international consortium involving researchers from the Centre for Genomic Regulation in Barcelona, we now have new clues about this evolution and further information ...

Birds of a feather? NSU researcher working to unlock the genome of birds

2014-12-11
FORT LAUDERDALE-DAVIE, Fla. - We all know that ducks, crows, falcons and egrets are birds. A group of scientists, however, wanted to dig deeper and unlock more about how these animals are related genetically. The idea was to investigate how modern species of birds emerged and evolved after the dinosaurs disappeared from the earth. This research included work from Stephen O'Brien, Ph.D., a professor at NSU's Oceanographic Center whose main focus in genomics. Now findings from this research are being announced in several scientific publications, including Science magazine, ...

Texas Tech biologist leads group that mapped crocodilian genomes

Texas Tech biologist leads group that mapped crocodilian genomes
2014-12-11
A Texas Tech University biologist led a team of more than 50 scientists who mapped the genomes of three crocodilians. By mapping these genomes, scientists may better understand the evolution of birds, which are the toothy predators' closest living relatives, said David Ray, an associate professor of biology. The team completed genomes of a crocodile, an alligator and a true gharial to complete the genomic family portrait. Their research, largely funded by the National Science Foundation, will appear Friday (Dec. 12) in the peer-reviewed journal, Science. "One of the ...

Latest research by NTU discovers reasons for malaria's drug resistance

Latest research by NTU discovers reasons for malarias drug resistance
2014-12-11
Scientists from Nanyang Technological University (NTU) have discovered exactly how the malaria parasite is developing resistance towards the most important front-line drugs used to treat the disease. Malaria is a mosquito-borne parasite which affects over 60 million people worldwide and in serious cases, can be fatal. There is currently no viable vaccine for malaria while antimalarial drugs and prophylaxis are losing its efficacy with increasing drug resistance. NTU Associate Professor Zbynek Bozdech, who led an international research team from 11 different countries, ...

International team maps 'big bang' of bird evolution

2014-12-11
The first findings of the Avian Phylogenomics Consortium are being reported nearly simultaneously in 28 papers -- eight papers in a Dec. 12 special issue of Science and 20 more in Genome Biology, GigaScience and other journals. The full set of papers in Science and other journals can be accessed at avian.genomics.cn Scientists already knew that the birds who survived the mass extinction experienced a rapid burst of evolution. But the family tree of modern birds has confused biologists for centuries and the molecular details of how birds arrived at the spectacular biodiversity ...

Chickens and turkeys 'closer to dinosaur ancestors' than other birds

2014-12-11
New research from the University of Kent suggests that chickens and turkeys have experienced fewer gross genomic changes than other birds as they evolved from their dinosaur ancestor. Professor Darren Griffin and a team at the University's School of Biosciences have conducted research that suggests that chromosomes of the chicken and turkey lineage have undergone the fewest number of changes compared to their ancient avian ancestor, thought to be a feathered dinosaur. The Kent research is part of a study by a consortium of leading scientists into avian or bird genomes, ...

Mapping the tree of life

Mapping the tree of life
2014-12-11
An international team of scientists has completed the largest whole genome study of a single class of animals to date. To map the tree of life for birds, the team sequenced, assembled and compared full genomes of 48 bird species representing all major branches of modern birds including ostrich, hummingbird, crow, duck, falcon, parrot, crane, ibis, woodpecker and eagle species. The researchers have been working on this ambitious genetic tree of life, or phylogeny, project for four years. As part of the Avian Phylogenomics Consortium -- comprised of more than 200 scientists ...

LAST 30 PRESS RELEASES:

Sea surface temperatures and deeper water temperatures reached a new record high in 2024

Connecting through culture: Understanding its relevance in intercultural lingua franca communication

Men more than three times as likely to die from a brain injury, new US study shows

Tongue cancer organoids reveal secrets of chemotherapy resistance

Applications, limitations, and prospects of different muscle atrophy models in sarcopenia and cachexia research

FIFAWC: A dataset with detailed annotation and rich semantics for group activity recognition

Transfer learning-enhanced physics-informed neural network (TLE-PINN): A breakthrough in melt pool prediction for laser melting

Holistic integrative medicine declaration

Hidden transport pathways in graphene confirmed, paving the way for next-generation device innovation

New Neurology® Open Access journal announced

Gaza: 64,000 deaths due to violence between October 2023 and June 2024, analysis suggests

Study by Sylvester, collaborators highlights global trends in risk factors linked to lung cancer deaths

Oil extraction might have triggered small earthquakes in Surrey

Launch of world’s most significant protein study set to usher in new understanding for medicine

New study from Chapman University reveals rapid return of water from ground to atmosphere through plants

World's darkest and clearest skies at risk from industrial megaproject

UC Irvine-led discovery of new skeletal tissue advances regenerative medicine potential

Pulse oximeters infrequently tested by manufacturers on diverse sets of subjects

Press Registration is open for the 2025 AAN Annual Meeting

New book connects eugenics to Big Tech

Electrifying your workout can boost muscles mass, strength, UTEP study finds

Renewed grant will continue UTIA’s integrated pest management program

Researchers find betrayal doesn’t necessarily make someone less trustworthy if we benefit

Pet dogs often overlooked as spreader of antimicrobial-resistant Salmonella

Pioneering new tool will spur advances in catalysis

Physical neglect as damaging to children’s social development as abuse

Earth scientist awarded National Medal of Science, highest honor US bestows on scientists

Research Spotlight: Lipid nanoparticle therapy developed to stop tumor growth and restore tumor suppression

Don’t write off logged tropical forests – converting to oil palm plantations has even wider effects on ecosystems

Chimpanzees are genetically adapted to local habitats and infections such as malaria

[Press-News.org] Genes tell story of birdsong and human speech
Duke lab co-led massive international gene sequencing effort