(Press-News.org) Both positive and negative experiences influence how genetic variants affect the brain and thereby behaviour, according to a new study. "Evidence is accumulating to show that the effects of variants of many genes that are common in the population depend on environmental factors. Further, these genetic variants affect each other," explained Sheilagh Hodgins of the University of Montreal and its affiliated Institut Universitaire en Santé Mentale de Montréal. "We conducted a study to determine whether juvenile offending was associated with interactions between three common genetic variants and positive and negative experiences." Hodgins and her colleagues published the study on December 11, 2014 in the International Journal of Neuropsychopharmacology.
Every single high school student aged 17 to 18 years old in Västmanland, a Swedish county, was invited to participate in the study, and 1,337 agreed to do so. They anonymously completed questionnaires reporting on delinquency, family conflict, experiences of sexual abuse, and the quality of their relationship with their parents. They also provided a sample of saliva from which the researchers extracted DNA.
The Monoamine oxidase A (MAOA) gene is a key enzyme in the catabolism of brain neurotransmitters, monoamines, especially serotonin. Catabolism is the breaking down of complex materials and the releasing of energy within an organism. "About 25% of Caucasian men carry the less active variant of MAOA. Among them, those who experience physical abuse in childhood are more likely than those who are not abused to display serious antisocial behaviour from childhood through adulthood," Hodgins explained. "Among females it is the high activity variant of the MAOA gene that interacts with adversity in childhood to increase the likelihood of antisocial behaviour."
The brain-derived neurotrophic factor (BDNF) gene modulates neuronal plasticity. The term neuronal plasticity refers to our brain cells' ability to reorganize pathways and connections throughout our lives. "The low expressing variants of BDNF are carried by approximately 30% of individuals and some previous studies had shown that this variant was associated with aggressive behaviour if carriers were exposed to aggressive peers. The third gene we studied was the serotonin transporter 5-HTTLPR," Hodgins said. "The low activity variant of this gene is carried by approximately 20% of individuals. Among carriers of this low activity variant, those exposed to adversity in childhood are more likely than those who are not to display antisocial and aggressive behaviour."
"We found that the three genetic variants interacted with each other and with family conflict and sexual abuse to increase the likelihood of delinquency, and with a positive parent-child relationship to decrease the risk of delinquency," Hodgins explained. "Among carriers of the low activity variants of all three genes, those exposed to family conflict or sexual abuse or both reported high levels of delinquency while those who reported a positive and warm relationship with their parents reported little or no delinquency." Thus, the same genetic variants were associated with high and low levels of delinquency depending on exposure to negative or positive environments.
In conclusion, variants of three common genes, MAOA, BDNF, and 5-HTTLPR, interacted with each other and with negative environmental factors to increase the risk of delinquency and with a positive environmental factor to decrease the risk of delinquency in a large sample of teenagers. "These findings add to those from other studies to show that genes affect the brain, and thereby behaviour, by altering sensitivity to the environment," Hodgins said.
INFORMATION:
About this study:
Kent W Nilsson, Erika Comasco, Sheilagh Hodgins, Lars Oreland, Cecilia Åslund published "Genotypes do not confer risk for delinquency but rather alter susceptibility to positive and negative environmental factors: Gene-environment interactions of BDNF Val66Met, 5-HTTLPR, and MAOA-uVNTR" in the International Journal of Neuropsychopharmacology on December 11, 2014.
Sheilagh Hodgins, Ph.D., F.R.S.C., is a professor at the University of Montreal's Department of Psychiatry, and a researcher at the Institut Universitaire en Santé Mentale de Montréal and the Research Centre at Institut Philippe-Pinel. She is also affiliated with the Karolinska Institutet in Stockholm, Sweden.
The researchers received funding from the Swedish Research Council (VR), the Swedish Brain Foundation, the Swedish Labour Market Insurance Company (AFA), the Swedish Alcohol Monopoly Research Council (SRA), the Swedish Council for Working Life and Social Research (FAS), the Uppsala and Örebro Regional Research Council, the Fredrik and Ingrid Thurings Foundation, the County Council of Västmanland, the County Council of Stockholm, the König-Söderströmska Foundation, the Swedish Psychiatric Foundation, Hållstens Forskningsstiftelse, and the Svenska Spel Research Foundation.
The University of Montreal is officially known as Université de Montréal.
Baltimore MD-- We would not expect a baby to join a team or participate in social situations that require sophisticated communication. Yet, most developmental biologists have assumed that young cells, only recently born from stem cells and known as "progenitors," are already competent at inter-communication with other cells.
New research from Carnegie's Allan Spradling and postdoctoral fellow Ming-Chia Lee shows that infant cells have to go through a developmental process that involves specific genes before they can take part in the group interactions that underlie ...
TORONTO, ON - Consider the relationship between an air traffic controller and a pilot. The pilot gets the passengers to their destination, but the air traffic controller decides when the plane can take off and when it must wait. The same relationship plays out at the cellular level in animals, including humans. A region of an animal's genome - the controller - directs when a particular gene - the pilot - can perform its prescribed function.
A new study by cell and systems biologists at the University of Toronto (U of T) investigating stem cells in mice shows, for the ...
White adipose tissue stores excess calories as fat that can be released for use in other organs during fasting. Mammals also have small amounts of brown adipose tissue, which primarily acts as an effective fat burner for the production of heat. Now researchers from the University of Southern Denmark have uncovered the mechanism by which white fat cells from humans gets reprogrammed to become browner.
Browning of white adipose tissue increases the energy consumption of the body and therefore constitutes a potential strategy for future treatment of obesity. The challenge ...
Immune cells perform a previously unsuspected role in the brain that may contribute to obesity, according to a new study by UC San Francisco researchers.
When the researchers fed mice a diet high in saturated milk fats, microglia, a type of immune cell, underwent a population explosion in the brain region called the hypothalamus, which is responsible for feeding behavior.
The researchers used an experimental drug and, alternatively, a genetic approach to knock out these microglia, and both strategies resulted in a complete loss of microglia-driven inflammation in the ...
PHOENIX, Ariz. -- Dec. 12, 2014 -- Using a basic genetic difference between men and women, the Translational Genomics Research Institute (TGen) has uncovered a way to track down the source of a neurological disorder in a young girl.
TGen's discovery relies on a simple genetic fact: Men have one X and one Y chromosome, while women have two X chromosomes. This women-only factor was leveraged by TGen investigators to develop a highly accurate method of tracking down a previously unrecognized disorder of the X-chromosome.
The study of a pre-teen girl, who went years ...
With the ball at the three-point line near the top of the key, what will Tim Duncan of the NBA's San Antonio Spurs do? Pass to a player posting up? Or does he take a shot? An analysis by Disney Research of player tracking data, however, suggests the highest probability is a pass to guard Tony Parker on his left.
It's just one play, by one player, in one sport - and perhaps not that hard for the average courtside observer to anticipate - but with the field of sports becoming more driven by sports analytics, predicting the next thing that a player will do has become a major ...
A new National Science Foundation (NSF) report reveals the number of U.S. citizen doctoral graduates in science, engineering and health fields, who remain in the United States, tracks closely with their intent to stay in the United States at the time of graduation. However, there are noticeable differences for doctoral graduates who were temporary visa holders at the time of graduation.
According to the report, 96.4 percent of U.S. citizen doctoral graduates from academic years 2001-09 reported their intent to live in the United States, a measure referred to as the expected ...
December 12, 2014 - All children should undergo vision health screening between age 36 and 72 months--preferably every year--using evidence-based test methods and with effective referral and follow-up, according to recommendations published in the January issue of Optometry and Vision Science, official journal of the American Academy of Optometry. The journal is published by Lippincott Williams & Wilkins, a part of Wolters Kluwer Health.
The National Expert Panel to The National Center for Children's Vision Health makes recommendations for vision health screening in ...
MADISON, Wis. - As a fundamental unit of life, the cell is central to all of biology. Better understanding how complex cells evolved and work promises new revelations in areas as diverse as cancer research and developing new crop plants.
But deep thinking on how the eukaryotic cell came to be is astonishingly scant. Now, however, a bold new idea of how the eukaryotic cell and, by extension, all complex life came to be is giving scientists an opportunity to re-examine some of biology's key dogma.
All complex life -- including plants, animals and fungi -- is made up of ...
The genomes of modern birds tell a story: Today's winged rulers of the skies emerged and evolved after the mass extinction that wiped out dinosaurs and almost everything else 66 million years ago.
That story is now coming to light, thanks to an international collaboration that has been underway for four years.
The first findings of the Avian Phylogenomics Consortium are being reported nearly simultaneously in 23 papers--eight papers in a special issue this week of Science, and 15 more in Genome Biology, GigaScience and other journals.
The results are funded in part ...