(Press-News.org) (Boston) - Genes appear to play a stronger role in longevity in people living to extreme older ages, according to a study of siblings led by Boston University and Boston Medical Center (BMC) researchers.
The study, published online in the Journal of Gerontology: Biological Sciences, found that for people who live to 90 years old, the chance of their siblings also reaching age 90 is relatively small - about 1.7 times greater than for the average person born around the same time. But for people who survive to age 95, the chance of a sibling living to the same age is 3.5 times greater - and for those who live to 100, the chance of a sibling reaching the same age grows to about nine times greater.
At 105 years old, the chance that a sibling will attain the same age is 35 times greater than for people born around the same time - although the authors note that such extreme longevity among siblings is very rare.
"These much higher relative chances of survival likely reflect different and more potent genetic contributions to the rarity of survival being studied, and strongly suggest that survival to age 90 and survival to age 105 are dramatically different phenotypes or conditions, with very different underlying genetic influences," the authors conclude.
The study, led by Paola Sebastiani, PhD, professor of biostatistics at the BU School of Public Health, analyzed survival data of the families of 1,500 participants in the New England Centenarian Study, the largest study of centenarians and their family members in the world, based at BMC. Among those families, the research team looked at more than 1,900 sibling relationships that contained at least one person reaching the age of 90.
Sebastiani and co-author Thomas Perls, MD, MPH, professor of medicine at the BU School of Medicine and the centenarian study's founder and lead investigator, said the findings advance the idea that genes play "a stronger and stronger role in living to these more and more extreme ages," and that the combinations of longevity-enabling genes that help people survive to 95 years are likely different from those that help people reach the age of 105, who are about 1,000 times rarer in the population.
They said that previous studies of the determinants of survival to older ages have been clouded by researchers not being precise about what they call aging, life span, longevity, or even exceptional longevity.
"For a long time, based upon twins' studies in the 1980s and early '90s, scholars have maintained that 20 to 30 percent of longevity or even life span is due to differences in genes, and that the remainder is due to differences in environment, health-related behaviors or chance events. But the oldest twins in those studies only got to their mid- to late-80's," said Perls. "Findings from this and other studies of much older (and rarer) individuals show that genetic makeup explains an increasingly greater portion of the variation in how old people live to be, especially for ages rarer than 100 years."
Perls and Sebastiani said there is considerable inconsistency in the gerontological literature concerning definitions of aging, longevity and life span.
"The casual use of these terms leads to confusing claims regarding heredity and non-replicated genetic studies," Perls said. "Many researchers equate the term 'longevity' with 'old age,' and neither term is adequately specific."
Because genes play a much stronger differentiating role in living to 105-plus years, studies of such individuals are "much more powerful in discovering longevity-related genes than studies of people in their 90s," he said.
Sebastiani, Perls and co-authors call for investigators probing genetic influences to be precise in describing the rarity or percentile of survival that study subjects achieve.
INFORMATION:
The research was funded by the National Institute on Aging and a pilot study grant from the Boston University School of Public Health. Besides Sebastiani and Perls, authors affiliated with the New England Centenarian Study, Boston Medical Center and the BU School of Medicine include: Lisa Nussbaum, Stacy Andersen and Mara Black.
Why does it seem as if a dark band ripples through a flock of European starlings that are steering clear of a falcon or a hawk? It all lies in the birds' ability to quickly and repeatedly dip to one side to avoid being attacked. For a split second, these zigs change the view that observers on the ground have of the birds' wings to cause a so-called agitation wave. This evasive strategy is copied as quick as a flash from one neighboring bird to the next. The escape behavior underlying this was discovered in a study led by Charlotte Hemelrijk of the Centre for Ecology and ...
Rockville, Md. (March 26, 2015) -- The motion of coins in a "Penny Pusher" carnival game is similar to the movement of cells in the eye's lens, as described in a new study published in Investigative Ophthalmology & Visual Science (IOVS). This new insight may help scientists understand how the eye maintains its precise shape -- critical for clear vision -- and how cataracts develop.
"If the size, shape or position of the eye is not carefully regulated, we simply will not see clearly," said author Steven Bassnett, PhD, of Washington University School of Medicine, Department ...
Life expectancy for Hispanics in the U.S. currently outpaces other ethnic groups, yet a new study finds that Mexican Americans -- especially women who were born in Mexico -- are spending a high proportion of their later years with some form of disability, a fact that suggests a growing need for community assistance and long-term care in the future.
These findings are reported in a new article published online in The Journals of Gerontology, Series B: Psychological and Social Sciences titled "Longer Lives, Sicker Lives? Increased Longevity and Extended Disability Among ...
Nobody likes getting the flu, but for some people, fluids and rest aren't enough. A small number of children who catch the influenza virus fall so ill they end up in the hospital -- perhaps needing ventilators to breathe -- even while their family and friends recover easily. New research by Rockefeller University scientists, published March 26 in Science, helps explain why: a rare genetic mutation.
The researchers scrutinized blood and tissue samples from a young girl who, at the age of two-and-a-half, developed acute respiratory distress syndrome after catching the flu, ...
CAMBRIDGE, Mass., March 26, 2015 - Newly published research from the Forsyth Institute details a discovery explaining why the 100 million Americans estimated to be taking prescription and over-the-counter antacid and heartburn medications may be at an increased risk of bone fractures.
The new report from Forsyth, published in the March issue of the prestigious medical research journal PLOS Genetics, explains that stomach acid in the gastrointestinal tract plays an important role in helping the intestines absorb and transfer calcium to the skeletal system. While the ...
Genetic defects affecting tiny channels in human nerve cells lead to several neurological diseases that result from aberrant nerve transmission, such as episodic ataxia, absence epilepsy, and migraines. These disorders have also been associated with neurodegeneration, but it has been less clear why this should be.
The transmission of nerve impulses requires the perfect orchestration of a series of complex cellular events in a matter of fractions of a second. The membrane that surrounds a nerve cell is normally electrically polarized, but a nerve impulse triggers a Mexican ...
MADISON, Wis. -- An Ebola whole virus vaccine, constructed using a novel experimental platform, has been shown to effectively protect monkeys exposed to the often fatal virus.
The vaccine, described today (March 26, 2015) in the journal Science, was developed by a group led by Yoshihiro Kawaoka, a University of Wisconsin-Madison expert on avian influenza, Ebola and other viruses of medical importance. It differs from other Ebola vaccines because as an inactivated whole virus vaccine, it primes the host immune system with the full complement of Ebola viral proteins and ...
Orchestrated costume changes make it possible for certain nasty microbes to outsmart the immune system, which would otherwise recognize them by the telltale proteins they wear. By taking the first detailed look at how one such parasite periodically assumes a new protein disguise during a long-term infection, new research at Rockefeller University challenges many assumptions about one of the best-known examples of this strategy, called antigenic variation, in the parasite that causes African sleeping sickness.
For research published on March 27 in Science, a team at Rockefeller ...
A new study led by Scripps Institution of Oceanography at UC San Diego researchers has revealed that the thickness of Antarctica's floating ice shelves has recently decreased by as much as 18 percent in certain areas over nearly two decades, providing new insights on how the Antarctic ice sheet is responding to climate change.
Data from nearly two decades of satellite missions have shown that the ice volume decline is accelerating, according to a study published on March 26, 2015, in the journal Science and supported by NASA. Scripps graduate student Fernando Paolo, Scripps ...
HOUSTON - (March 26, 2015) - Taking out the garbage is a crucial step in housecleaning.
Similarly, autophagy is the body's first-line of defense against the buildup up of toxic substances, degrading old organelles and proteins to provide new substrates and building blocks. In this way, autophagy prevents the buildup of "garbage" that can result in destruction of neurons and cause neurologic diseases.
A forward genetic screen in Drosophila melanogaster (fruit flies) identified mutant copies, or alleles, of a gene called cacophony associated with defects in autophagy ...