PRESS-NEWS.org - Press Release Distribution
PRESS RELEASES DISTRIBUTION

A metal composite that will (literally) float your boat

A metal composite that will (literally)  float your boat
2015-05-12
(Press-News.org) BROOKLYN, New York -- Researchers have demonstrated a new metal matrix composite that is so light that it can float on water. A boat made of such lightweight composites will not sink despite damage to its structure. The new material also promises to improve automotive fuel economy because it combines light weight with heat resistance.

Although syntactic foams have been around for many years, this is the first development of a lightweight metal matrix syntactic foam. It is the work of a team of researchers from Deep Springs Technology (DST) and the New York University Polytechnic School of Engineering.

Their magnesium alloy matrix composite is reinforced with silicon carbide hollow particles and has a density of only 0.92 grams per cubic centimeter compared to 1.0 g/cc of water. Not only does it have a density lower than that of water, it is strong enough to withstand the rigorous conditions faced in the marine environment.

Significant efforts in recent years have focused on developing lightweight polymer matrix composites to replace heavier metal-based components in automobiles and marine vessels. The technology for the new composite is very close to maturation and could be put into prototypes for testing within three years. Amphibious vehicles such as the Ultra Heavy-lift Amphibious Connector (UHAC) being developed by the U.S. Marine Corps can especially benefit from the light weight and high buoyancy offered by the new syntactic foams, the researchers explained.

"This new development of very light metal matrix composites can swing the pendulum back in favor of metallic materials," forecasted Nikhil Gupta, an NYU School of Engineering professor in the Department of Mechanical and Aerospace Engineering and the study's co-author. "The ability of metals to withstand higher temperatures can be a huge advantage for these composites in engine and exhaust components, quite apart from structural parts."

The syntactic foam made by DST and NYU captures the lightness of foams, but adds substantial strength. The secret of this syntactic foam starts with a matrix made of a magnesium alloy, which is then turned into foam by adding strong, lightweight silicon carbide hollow spheres developed and manufactured by DST. A single sphere's shell can withstand pressure of over 25,000 pounds per square inch (PSI) before it ruptures -- one hundred times the maximum pressure in a fire hose. The hollow particles also offer impact protection to the syntactic foam because each shell acts like an energy absorber during its fracture. The composite can be customized for density and other properties by adding more or fewer shells into the metal matrix to fit the requirements of the application. This concept can also be used with other magnesium alloys that are non-flammable.

INFORMATION:

The new composite has potential applications in boat flooring, automobile parts, and buoyancy modules as well as vehicle armor. The authors recently published their findings in the International Journal of Impact Engineering. "Dynamic Properties of Silicon Carbide Hollow Particle Filled Magnesium Alloy (AZ91D) Matrix Syntactic Foams" is available at http://www.sciencedirect.com/science/article/pii/S0734743X15000767. This research is conducted in collaboration with the U.S. Army Research Laboratory.

The NYU Polytechnic School of Engineering dates to 1854, when the NYU School of Civil Engineering and Architecture as well as the Brooklyn Collegiate and Polytechnic Institute (widely known as Brooklyn Poly) were founded. Their successor institutions merged in January 2014 to create a comprehensive school of education and research in engineering and applied sciences, rooted in a tradition of invention, innovation and entrepreneurship. In addition to programs at its main campus in downtown Brooklyn, it is closely connected to engineering programs in NYU Abu Dhabi and NYU Shanghai, and it operates business incubators in downtown Manhattan and Brooklyn. For more information, visit http://engineering.nyu.edu.


[Attachments] See images for this press release:
A metal composite that will (literally)  float your boat

ELSE PRESS RELEASES FROM THIS DATE:

Dedicated scientists and volunteers working to better understand now rare abalone species

2015-05-12
The sun was just beginning to rise as two men headed down to the beach to board a small inflatable boat. Searching for abalone was on their agenda for the day. Their excitement was difficult to contain as they surveyed the coastline looking for sand ridges -- an important clue that abalone may be near. The two men, David Witting and Bill Hagey, share a passion for finding the now rare white abalone and understanding the movement and feeding behaviors of all abalone species. David Witting, a NOAA Fisheries biologist, has been engaged in efforts to restore abalone populations ...

Artificial photosynthesis: New, stable photocathode with great potential

Artificial photosynthesis: New, stable photocathode with great potential
2015-05-12
Many of us are familiar with electrolytic splitting of water from their school days: if you hold two electrodes into an aqueous electrolyte and apply a sufficient voltage, gas bubbles of hydrogen and oxygen are formed. If this voltage is generated by sunlight in a solar cell, then you could store solar energy by generating hydrogen gas.This is because hydrogen is a versatile medium of storing and using "chemical energy". Research teams all over the world are therefore working hard to develop compact, robust, and cost-effective systems that can accomplish this challenge. ...

Researchers theoretically demonstrate detection of spin of atoms at room temperature

2015-05-12
For the first time, a researcher at the University of Waterloo has theoretically demonstrated that it is possible to detect a single nuclear spin at room temperature, which could pave the way for new approaches to medical diagnostics. Published in the journal Nature nanotechnology this week, Amir Yacoby from the University of Waterloo, along with colleagues from University of Basel and RWTH Aachen University, propose a theoretical scheme that could lead to enhanced Nuclear Magnetic Resonance (NMR) imaging of biological materials in the near future by using weak magnetic ...

Astrophysicists prepare weather forecasts for planets beyond our solar system

Astrophysicists prepare weather forecasts for planets beyond our solar system
2015-05-12
TORONTO, ON -- "Cloudy for the morning, turning to clear with scorching heat in the afternoon." While this might describe a typical late-summer day in many places on Earth, it may also apply to planets outside our solar system, according to a new study by an international team of astrophysicists from the University of Toronto, York University and Queen's University Belfast. Using sensitive observations from the Kepler space telescope, the researchers have uncovered evidence of daily weather cycles on six extra-solar planets seen to exhibit different phases. Such phase ...

Exogenous microRNAs in maternal food pass through placenta, regulate fetal gene expression

2015-05-12
In a new study published in the Protein & Cell, Chen-Yu Zhang's group at Nanjing University reports that small non-coding RNAs in maternal food can transfer through placenta to regulate fetal gene expression. MicroRNAs (miRNA) are a class of noncoding RNAs with lengths of approximately 22 nucleotides that bind to target messenger RNAs to inhibit protein translation. In previous studies, the same group has found that plant miRNAs can enter into the host blood and tissues via the route of food-intake. The food-derived exogenous miRNAs are absorbed, packaged into microvesical ...

Bacterial communities can act as precise biosensors of environmental damage

2015-05-12
WASHINGTON, DC -- May 12, 2015-- A multidisciplinary group of US-based researchers has shown that the mixture of species found within natural bacterial communities in the environment can accurately predict the presence of contaminants such as uranium, nitrate, and oil. The findings, published this week in mBio, the online open-access journal of the American Society for Microbiology, show that the rapid sequencing of microbiomes in place at environmental sites can be used to monitor damage caused by human activity. "This approach might be a general way for us to see anthropogenic ...

Nerve cells in the fast lane

2015-05-12
Nerve cells that produce dopamine for the purpose of transmitting signals to other cells affect numerous crucial brain functions. This becomes evident in diseases such as Parkinson's and schizophrenia, where dopamine transmission in the brain is impaired. In collaboration with researchers from Bonn, RUB scientists at the Mercator Research Group "Structure of Memory" have now identified in what way a specific form of this important cell is generated and which networks it forms in the course of brain development. In the process, the researchers discovered a data highway of ...

E-skin and pocket-sized diagnostic machines give patients the power back

2015-05-12
Amsterdam, May 12, 2015 - Wearable E-skin that can measure heart rate and blood pressure, and paper diagnostic machines the size of a credit card that can give instant readings on blood and saliva samples are two new bio-sensing technologies presented at Elsevier's 4th International Conference on Bio-Sensing Technology in Lisbon, Portugal on 12 May 2015. Bio-sensors can detect and analyze data to give patients information on their heart rate and blood pressure, blood sugar and hormone levels, and even test whether they are infected with antibiotic-resistant bacteria. ...

Scientists regenerate bone tissue using only proteins secreted by stem cells

2015-05-12
SAN FRANCISCO, CA--MAY 11, 2015--Scientists have discovered a way to regrow bone tissue using the protein signals produced by stem cells. This technology could help treat victims who have experienced major trauma to a limb, like soldiers wounded in combat or casualties of a natural disaster. The new method improves on older therapies by providing a sustainable source for fresh tissue and reducing the risk of tumor formation that can arise with stem cell transplants. The new study, published in Scientific Reports, is is the first to extract the necessary bone-producing ...

Using microbial communities to assess environmental contamination

Using microbial communities to assess environmental contamination
2015-05-12
First there were canaries in coal mines, now there are microbes at nuclear waste sites, oil spills and other contaminated environments. A multi-institutional team of more than 30 scientists has found that statistical analysis of DNA from natural microbial communities can be used to accurately identify environmental contaminants and serve as quantitative geochemical biosensors. This study was sponsored by ENIGMA, a U.S. Department of Energy (DOE) Office of Science "Scientific Focus Area Program" based at the Lawrence Berkeley National Laboratory (Berkeley Lab). "Changes ...

LAST 30 PRESS RELEASES:

Stem Cell Reports seeks applications for its Early Career Scientist Editorial Board

‘Brand new physics’ for next generation spintronics

Pacific Islander teens assert identity through language

White House honors Tufts economist

Sharp drop in mortality after 41 weeks of pregnancy

Flexible electronics integrated with paper-thin structure for use in space

Immune complex shaves stem cells to protect against cancer

In the Northeast, 50% of adult ticks carry Lyme disease carrying bacteria

U of A Cancer Center clinical trial advances research in treatment of biliary tract cancers

Highlighting the dangers of restricting discussions of structural racism

NYU Tandon School of Engineering receives nearly $10 million from National Telecommunications and Information Administration

NASA scientists find new human-caused shifts in global water cycle

This tiny galaxy is answering some big questions

Large and small galaxies may grow in ways more similar than expected

The ins and outs of quinone carbon capture

Laboratory for Laser Energetics at the University of Rochester launches IFE-STAR ecosystem and workforce development initiatives

Most advanced artificial touch for brain-controlled bionic hand

Compounding drought and climate effects disrupt soil water dynamics in grasslands

Multiyear “megadroughts” becoming longer and more severe under climate change

Australopithecines at South African cave site were not eating substantial amounts of meat

An AI model developed to design proteins simulates 500 million years of protein evolution in developing new fluorescent protein

Fine-tuned brain-computer interface makes prosthetic limbs feel more real

New chainmail-like material could be the future of armor

The megadroughts are upon us

Eavesdropping on organs: Immune system controls blood sugar levels

Quantum engineers ‘squeeze’ laser frequency combs to make more sensitive gas sensors

New study reveals how climate change may alter hydrology of grassland ecosystems

Polymer research shows potential replacement for common superglues with a reusable and biodegradable alternative 

Research team receives $1.5 million to study neurological disorders linked to long COVID

Research using non-toxic bacteria to fight high-mortality cancers prepares for clinical trials

[Press-News.org] A metal composite that will (literally) float your boat