(Press-News.org) DURHAM, N.C. – The brain's visual neurons continually develop predictions of what they will perceive and then correct erroneous assumptions as they take in additional external information, according to new research done at Duke University.
This new mechanism for visual cognition challenges the currently held model of sight and could change the way neuroscientists study the brain.
The new vision model is called predictive coding. It is more complex and adds an extra dimension to the standard model of sight. The prevailing model has been that neurons process incoming data from the retina through a series of hierarchical layers. In this bottom-up system, the lower neurons first detect an object's features, such as horizontal or vertical lines. The neurons send that information to the next level of brain cells that identify other specific features and feed the emerging image to the next layer of neurons, which add additional details. The image travels up the neuron ladder until it is completely formed.
But new brain imaging data from a study led by Duke researcher Tobias Egner provides "clear and direct evidence" that the standard picture of vision, called feature detection, is incomplete. The data, published Dec. 8 in the Journal of Neuroscience, show that the brain predicts what it will see and edits those predictions in a top-down mechanism, said Egner, who is an assistant professor of psychology and neuroscience.
In this system, the neurons at each level form and send context-sensitive predictions about what an image might be to the next lower neuron level. The predictions are compared with the incoming sensory data. Any mismatches, or prediction errors, between what the neurons expected to see and what they observe are sent up the neuron ladder. Each neuron layer then adjusts its perceptions of an image in order to eliminate prediction error at the next lower layer.
Finally, once all prediction error is eliminated, "the visual cortex has assigned its best guess interpretation of what an object is, and a person actually sees the object," Egner said. He noted that this happens subconsciously in a matter of milliseconds. "You never even really know you're doing it," he said.
Egner and his colleagues wanted to capture the process almost as it happened. The team used functional Magnetic Resonance Imaging, or fMRI, brain scans of the fusiform face area (FFA), a region that deals with recognizing faces. The researchers monitored 16 subjects' brains as they observed faces or houses framed in different colored boxes that predicted the likelihood of the picture being a face or house. Study participants were told to press a button when they observed an inverted image of a face or house, but the researchers were measuring something else. By changing the face-frame or house-frame color combination, the researchers controlled and measured the FFA neural response to tease apart responses to the stimulus, face expectation and error processing.
If the feature detection model were correct, the FFA neural response should be stronger for faces than houses, irrespective of the subjects' expectations. But Egner and his colleagues found that if subjects had a high expectation of seeing a face, their neural response was nearly the same whether they were actually shown a face or a house. The study goes on to use computational modeling to show that this pattern of neural activation can only be explained by a shared contribution from face expectation and prediction error.
This study provides support for a "very different view" of how the visual system works, said Scott Murray, a University of Washington neuroscientist who was not involved in the research. Instead of high neuron firing rates providing information about the presence of a particular feature, high firing rates are instead associated with a deviation from what neurons expect to see, Murray explained. "These deviation signals presumably provide useful tags for something the visual system has to process more to understand."
Egner said that theorists have been developing the predictive coding model for the past 30 years, but no previous studies have directly tested it against the feature detection model. "This paper is provocative and motions toward a change in the preconception of how vision works. In essence, more scientists may become more sympathetic to the new model," he said.
Murray also said that the findings could influence the way neuroscientists continue to study the brain. Most research assumes that if a brain region has a large response to a particular visual image, and then it is somehow responsible for, or specialized for, processing the content of the image. This research "challenges that assumption," he said, explaining that future studies have to take into account expectations that participants have for the visual images being presented.
###
END
INDIANAPOLIS – A grant from the D. J. Angus-Scientech Educational Foundation has made it possible for a student from a suburban Indianapolis high school to co-author, along with his mentor and two other scientists, a theoretical physics study in a top tier peer-reviewed scientific journal, a paper which has been selected for rapid communication due to its importance to the field.
"It is extremely rare for a high school student to be a co-author on a physics paper. Statistics on this aren't available, but it is likely less than 1 paper in 1,000, that's one tenth of one ...
HOUSTON (Dec. 7, 2010) – Private insurers appear to be more effective in controlling health care spending differences between two Texas cities than Medicare, according to researchers from The University of Texas Health Science Center at Houston (UTHealth) School of Public Health. Researchers found that sharp disparities in per-capita Medicare healthcare spending between McAllen and El Paso were significantly diminished when private insurance paid for health care costs in the under-65 population.
"For a number of reasons, insurers generally are reluctant to intrude on ...
Among patients with a family or past history of colorectal cancer (CRC), testing between colonoscopies helps detect CRC and advanced tumors that are either missed or develop rapidly, according to a new study in Gastroenterology, the official journal of the American Gastroenterological Association (AGA) Institute.
"By using fecal immunochemical testing — a new type of stool blood test — in the interval between surveillance colonoscopies, we were able to detect cancer much sooner than if we had waited for the scheduled surveillance," said Graeme P. Young, MD, AGAF, FRACP, ...
Are you ready for robots in the ER?
A group of computer engineers at Vanderbilt University is convinced that the basic technology is now available to create robot assistants that can perform effectively in the often-chaotic environment of the emergency room. The specialists in emergency medicine at Vanderbilt University Medical Center are enthusiastic about the potential advantages. So, the two groups have formed an interdisciplinary team to explore the use of robotics in this critical and challenging setting.
Team member Mitch Wilkes, associate professor of electrical ...
In these modern times, people can have jobs that weren't traditionally associated with their genders. Men are nurses; women are CEOs. A new study examines perceptions of people in high-powered jobs and finds that they're likely to be judged more harshly for mistakes if they're in a job that's not normally associated with their gender.
"The reason I got interested is, there was so much talk about race and gender barriers being broken," says Victoria Brescoll, a psychological scientist at Yale University and first author of the study. In the 2008 presidential election, ...
Manhattan, KS —December 7, 2010— We've all been there: we are watching a movie with a parent or relative when a steamy love scene appears. A new study published in Applied Cognitive Psychology shows that all of that squirming and averting of eyes is normal, especially when you are accompanied by your parents. The authors of the study assert that not all movie-watching experiences are enjoyable or positive. Some movies make us feel downright uncomfortable or disturbed in their content and delivery, while others are inspirational, touching, or have us rolling on the floor. ...
Questionnaire results and DNA samples volunteered by a group of University of Alberta students has broken new ground in the study of aggression. U of A Psychology researcher Peter Hurd was looking at the link between an individual's sensitivity to testosterone and aggressive behaviour.
"I looked at the gene that makes the body's testosterone detector to determine if variations in this detector's sensitivity to the chemical causes people to be more or less aggressive," said Hurd.
Hurd came across a previously published study in India that found violent criminals had ...
Scientists have created a way to isolate neural stem cells – cells that give rise to all the cell types of the brain – from human brain tissue with unprecedented precision, an important step toward developing new treatments for conditions of the nervous system, like Parkinson's and Huntington's diseases and spinal cord injury.
The work by a team of neuroscientists at the University of Rochester Medical Center was published in the Nov. 3 issue of the Journal of Neuroscience. Neurologist Steven Goldman, M.D., Ph.D., chair of the Department of Neurology, led the team.
The ...
SANTA CRUZ, CA--Researchers have found compelling evidence for an extensive biological community living in porous rock deep beneath the seafloor. The microbes in this hidden world appear to be an important source of dissolved organic matter in deep ocean water, a finding that could dramatically change ideas about the ocean carbon cycle.
Matthew McCarthy, associate professor of ocean sciences at the University of California, Santa Cruz, led a team of researchers from several institutions who analyzed the dissolved organic matter in fluids from natural vents on the seafloor ...
WEST LAFAYETTE, Ind. - A Purdue University research team developed a nanoparticle that can hold and release an antimicrobial agent as needed for extending the shelf life of foods susceptible to Listeria monocytogenes.
Yuan Yao, an assistant professor of food science, altered the surface of a carbohydrate found in sweet corn called phytoglycogen, which led to the creation of several forms of a nanoparticle that could attract and stabilize nisin, a food-based antimicrobial peptide. The nanoparticle can then preserve nisin for up to three weeks, combating Listeria, a potentially ...