PRESS-NEWS.org - Press Release Distribution
PRESS RELEASES DISTRIBUTION

Engineering phase changes in nanoparticle arrays

Scientists alter attractive and repulsive forces between DNA-linked particles to make dynamic, phase-shifting forms of nanomaterials

Engineering phase changes in nanoparticle arrays
2015-05-25
(Press-News.org) UPTON, NY -- Scientists at the U.S. Department of Energy's Brookhaven National Laboratory have just taken a big step toward the goal of engineering dynamic nanomaterials whose structure and associated properties can be switched on demand. In a paper appearing in Nature Materials, they describe a way to selectively rearrange the nanoparticles in three-dimensional arrays to produce different configurations, or phases, from the same nano-components.

"One of the goals in nanoparticle self-assembly has been to create structures by design," said Oleg Gang, who led the work at Brookhaven's Center for Functional Nanomaterials (CFN, http://www.bnl.gov/cfn/), a DOE Office of Science User Facility. "Until now, most of the structures we've built have been static. Now we are trying to achieve an even more ambitious goal: making materials that can transform so we can take advantage of properties that emerge with the particles' rearrangements."

The ability to direct particle rearrangements, or phase changes, will allow the scientists to choose the desired properties-say, the material's response to light or a magnetic field-and switch them as needed. Such phase-changing materials could lead to new applications, such as dynamic energy-harvesting or responsive optical materials.

DNA-directed rearrangement

This latest advance in nanoscale engineering builds on the team's previous work developing ways to get nanoparticles to self-assemble into complex composite arrays, including linking them together with tethers constructed of complementary strands of synthetic DNA. In this case, they started with an assembly of nanoparticles already linked in a regular array by the complementary binding of the A, T, G, and C bases on single stranded DNA tethers, then added "reprogramming" DNA strands to alter the interparticle interactions.

"We know that properties of materials built from nanoparticles are strongly dependent on their arrangements," said Gang. "Previously, we've even been able to manipulate optical properties by shortening or lengthening the DNA tethers. But that approach does not permit us to achieve a global reorganization of the entire structure once it's already built."

In the new approach, the reprogramming DNA strands adhere to open binding sites on the already assembled nanoparticles. These strands exert additional forces on the linked-up nanoparticles.

"By introducing different types of reprogramming DNA strands, we modify the DNA shells surrounding the nanoparticles," explained CFN postdoctoral fellow Yugang Zhang, the lead author on the paper. "Altering these shells can selectively shift the particle-particle interactions, either by increasing both attraction and repulsion, or by separately increasing only attraction or only repulsion. These reprogrammed interactions impose new constraints on the particles, forcing them to achieve a new structural organization to satisfy those constraints."

Using their method, the team demonstrated that they could switch their original nanoparticle array, the "mother" phase, into multiple different daughter phases with precision control.

This is quite different from phase changes driven by external physical conditions such as pressure or temperature, Gang said, which typically result in single phase shifts, or sometimes sequential ones. "In those cases, to go from phase A to phase C, you first have to shift from A to B and then B to C," said Gang. "Our method allows us to pick which daughter phase we want and go right to that one because the daughter phase is completely determined by the type of DNA reprogramming strands we use."

The scientists were able to observe the structural transformations to various daughter phases using a technique called in situ small-angle x-ray scattering at the National Synchrotron Light Source (http://www.bnl.gov/ps/), another DOE Office of Science User Facility that operated at Brookhaven Lab from 1982 until last September (now replaced by NSLS-II, which produces x-ray beams 10,000 times brighter). The team also used computational modeling to calculate how different kinds of reprogramming strands would alter the interparticle interactions, and found their calculations agreed well with their experimental observations.

"The ability to dynamically switch the phase of an entire superlattice array will allow the creation of reprogrammable and switchable materials wherein multiple, different functions can be activated on demand," said Gang. "Our experimental work and accompanying theoretical analysis confirm that reprogramming DNA-mediated interactions among nanoparticles is a viable way to achieve this goal."

INFORMATION:

This was done in collaboration with scientists from Columbia University's School of Engineering and Applied Science and the Indian Institute of Technology Gandhinagar. The work was funded by the DOE Office of Science. Brookhaven National Laboratory is supported by the Office of Science of the U.S. Department of Energy. The Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit science.energy.gov.

One of ten national laboratories overseen and primarily funded by the Office of Science of the U.S. Department of Energy (DOE), Brookhaven National Laboratory conducts research in the physical, biomedical, and environmental sciences, as well as in energy technologies and national security. Brookhaven Lab also builds and operates major scientific facilities available to university, industry and government researchers. Brookhaven is operated and managed for DOE's Office of Science by Brookhaven Science Associates, a limited-liability company founded by the Research Foundation for the State University of New York on behalf of Stony Brook University, the largest academic user of Laboratory facilities, and Battelle, a nonprofit applied science and technology organization.

Related Links

Scientific paper: "Selective transformations between nanoparticle superlattices via the reprogramming of DNA-mediated interactions" LINK will be active after embargo: http://dx.doi.org/10.1038/nmat4296

Press release on a recent related study, with additional links to previous work: Scientists Use Nanoscale Building Blocks and DNA 'Glue' to Shape 3D Superlattices [http://www.bnl.gov/newsroom/news.php?a=11716]

Media contacts: Karen McNulty Walsh, (631) 344-8350, kmcnulty@bnl.gov, or Peter Genzer, (631) 344-3174, genzer@bnl.gov


[Attachments] See images for this press release:
Engineering phase changes in nanoparticle arrays Engineering phase changes in nanoparticle arrays 2 Engineering phase changes in nanoparticle arrays 3

ELSE PRESS RELEASES FROM THIS DATE:

Asian family research answers questions on fatty acid in brain

2015-05-25
New research conducted in a rural community in Pakistan highlights the crucial role that essential fatty acids play in human brain growth and function. A team co-led by the University of Exeter, working with experts in Singapore, has published findings in Nature Genetics which show that mutations in the protein Mfsd2a cause impaired brain development in humans. Mfsd2a is the transporter in the brain for a special type of fat called lysophosphatidylcholines (LPCs) -- which are composed of essential fatty acids like omega-3. This shows the crucial role of these fats in ...

Complex signaling between blood and stem cells controls regeneration in fly gut

2015-05-25
Having a healthy gut may well depend on maintaining a complex signaling dance between immune cells and the stem cells that line the intestine. Scientists at the Buck Institute are now reporting significant new insight into how these complex interactions control intestinal regeneration after a bacterial infection. It's a dance that ensures repair after a challenge, but that also goes awry in aging fruit flies -- the work thus offers important new clues into the potential causes of age-related human maladies, such as irritable bowel syndrome, leaky gut and colorectal cancer. "We've ...

Chinese researchers presented de novo assembly of a haplotype-resolved diploid genome

2015-05-25
May 26, 2015, Shenzhen, China - Researchers from BGI reported the most complete haploid-resolved diploid genome (HDG) sequence based on de novo assembly with NGS technology and the pipeline developed lays the foundation for de novo assembly of genomes with high levels of heterozygosity. The latest study was published online today in Nature Biotechnology. The human genome is diploid, and knowledge of the variants on each chromosome is important for the interpretation of genomic information. In this study, researchers presented the assembly of a haplotype-resolved diploid ...

'Pain sensing' gene discovery could help in development of new methods of pain relief

2015-05-25
A gene essential to the production of pain-sensing neurons in humans has been identified by an international team of researchers co-led by the University of Cambridge. The discovery, reported today in the journal Nature Genetics, could have implications for the development of new methods of pain relief. Pain perception is an evolutionarily-conserved warning mechanism that alerts us to dangers in the environment and to potential tissue damage. However, rare individuals - around one in a million people in the UK - are born unable to feel pain. These people accumulate numerous ...

Researchers find the 'key' to quantum network solution

2015-05-25
Scientists at the University of York's Centre for Quantum Technology have made an important step in establishing scalable and secure high rate quantum networks. Working with colleagues at the Technical University of Denmark (DTU), Massachusetts Institute of Technology (MIT), and the University of Toronto, they have developed a protocol to achieve key-rates at metropolitan distances at three orders-of-magnitude higher than previously. Standard protocols of Quantum Key Distribution (QKD) exploit random sequences of quantum bits (qubits) to distribute secret keys in a completely ...

Re-hospitalization rates for traumatic brain injury higher than previously reported

2015-05-25
TORONTO, May 25, 2015 - A new, Ontario-wide study shows that rates of hospital readmission following a traumatic brain injury (TBI) are greater than other chronic diseases and injuries and are higher than previously reported. The study, led by Dr. Angela Colantonio, senior scientist, Toronto Rehabilitation Institute, UHN, examined nearly 30,000 TBI patients discharged from Ontario hospitals over the span of eight years. Published in the May edition of Archives of Physical Medicine and Rehabilitation, the study found that about 36 per cent of patients with TBI had been ...

Biodiversity: 11 new species come to light in Madagascar

Biodiversity: 11 new species come to light in Madagascar
2015-05-25
Madagascar is home to extraordinary biodiversity, but in the past few decades, the island's forests and associated biodiversity have been under greater attack than ever. Rapid deforestation is affecting the biotopes of hundreds of species, including the panther chameleon, a species with spectacular intra-specific colour variation. A new study by Michel Milinkovitch, professor of genetics, evolution, and biophysics at the University of Geneva (UNIGE), led in close collaboration with colleagues in Madagascar, reveals that this charismatic reptilian species, which is only ...

Can you see what I hear? Blind human echolocators use visual areas of the brain

2015-05-25
This news release is available in French. Certain blind individuals have the ability to use echoes from tongue or finger clicks to recognize objects in the distance, and some use echolocation as a replacement for vision. Research done by Dr. Mel Goodale, from the University of Western Ontario, in Canada, and colleagues around the world, is showing that echolocation in blind individuals is a full form of sensory substitution, and that blind echolocation experts recruit regions of the brain normally associated with visual perception when making echo-based assessments ...

Cognitive impairment predicts worse outcome in heart failure

2015-05-24
Seville, Spain - 24 May 2015: Cognitive impairment predicts worse outcome in elderly heart failure patients, reveals research presented today at Heart Failure 2015 by Hiroshi Saito, a physiotherapist at Kameda Medical Centre in Kamogawa, Japan. Patients with cognitive impairment had a 7.5 times greater risk of call cause death and heart failure readmission. Heart failure patients with cognitive impairment may get progressively worse at adhering to medications, leading to poorer prognosis. Heart Failure 2015 is the main annual meeting of the Heart Failure Association ...

New survey shows 36-percent increase in pediatric patients treated with proton therapy

2015-05-23
SAN DIEGO - Results from a new nationwide survey announced today indicate a steady increase in the number of pediatric patients who are being treated with proton radiation therapy for cancerous and non-cancerous tumors. The research, led by Andrew L. Chang, M.D., medical director of pediatrics with the Scripps Proton Therapy Center, was presented during the 54th annual Particle Therapy Co-Operative Group (PTCOG) Conference in San Diego, which runs through May 23. Based on a survey of all proton therapy centers in the United States, the number of pediatric patients treated ...

LAST 30 PRESS RELEASES:

New Durham University study reveals mystery of decaying exoplanet orbits

The threat of polio paralysis may have disappeared, but enterovirus paralysis is just as dangerous and surveillance and testing systems are desperately needed

Study shows ChatGPT failed when challenging ESCMID guideline for treating brain abscesses

Study finds resistance to critically important antibiotics in uncooked meat sold for human and animal consumption

Global cervical cancer vaccine roll-out shows it to be very effective in reducing cervical cancer and other HPV-related disease, but huge variations between countries in coverage

Negativity about vaccines surged on Twitter after COVID-19 jabs become available

Global measles cases almost double in a year

Lower dose of mpox vaccine is safe and generates six-week antibody response equivalent to standard regimen

Personalised “cocktails” of antibiotics, probiotics and prebiotics hold great promise in treating a common form of irritable bowel syndrome, pilot study finds

Experts developing immune-enhancing therapies to target tuberculosis

Making transfusion-transmitted malaria in Europe a thing of the past

Experts developing way to harness Nobel Prize winning CRISPR technology to deal with antimicrobial resistance (AMR)

CRISPR is promising to tackle antimicrobial resistance, but remember bacteria can fight back

Ancient Maya blessed their ballcourts

Curran named Fellow of SAE, ASME

Computer scientists unveil novel attacks on cybersecurity

Florida International University graduate student selected for inaugural IDEA2 public policy fellowship

Gene linked to epilepsy, autism decoded in new study

OHSU study finds big jump in addiction treatment at community health clinics

Location, location, location

Getting dynamic information from static snapshots

Food insecurity is significant among inhabitants of the region affected by the Belo Monte dam in Brazil

The Society of Thoracic Surgeons launches new valve surgery risk calculators

Component of keto diet plus immunotherapy may reduce prostate cancer

New circuit boards can be repeatedly recycled

Blood test finds knee osteoarthritis up to eight years before it appears on x-rays

April research news from the Ecological Society of America

Antimicrobial resistance crisis: “Antibiotics are not magic bullets”

Florida dolphin found with highly pathogenic avian flu: Report

Barcodes expand range of high-resolution sensor

[Press-News.org] Engineering phase changes in nanoparticle arrays
Scientists alter attractive and repulsive forces between DNA-linked particles to make dynamic, phase-shifting forms of nanomaterials