Penn researchers home in on what's wearing out T cells
T cell exhaustion study has possible implications for cancer and antiviral therapies
2015-06-03
(Press-News.org) PHILADELPHIA -- Sometimes even cells get tired. When the T cells of your immune system are forced to deal over time with cancer or a chronic infection such as HIV or hepatitis C, they can develop 'T cell exhaustion,' becoming less effective and losing their ability to attack and destroy the invaders of the body. While the PD-1 protein pathway has long been implicated as a primary player in T cell exhaustion, a major question has been whether PD-1 actually directly causes exhaustion. A new paper from the lab of E. John Wherry, Ph.D., a professor of microbiology and director of the Institute for Immunology, in the Perelman School of Medicine at the University of Pennsylvania, seems to -- at least partially -- let PD-1 off the hook. The paper was published this week in the Journal of Experimental Medicine.
In short-term infections such as a cold or flu, PD-1 helps to regulate an initial strong T cell response, preventing the T cells from over proliferating and attacking the body's own cells after the infection is cleared. But in patients with cancer or chronic infections, blocking PD-1 has proved a highly successful therapeutic strategy that allows the T cells to fight on. 'Blocking this pathway reverses T cell exhaustion and improves tumor immunity in humans and antiviral and anti-tumor responses in animal models,' Wherry notes. 'But a key question has been whether this PD-1 pathway causes exhaustion. Our work shows that it does not.'
Wherry and his collaborators used PD-1 knockout mice infected with lymphocytic choriomeningitis virus to see whether the genetic deletion of PD-1 would be enough to prevent T cell exhaustion. They observed a robust initial T cell response, but with a cost. 'While transient disruption of this pathway may have therapeutic benefit because it temporarily 'revs up' the immune response, permanent loss of PD-1 signals seems to result in a 'flame out' where T cells can't sustain higher level activation and become more dysfunctional,' Wherry says.
After a month or so, he explains, 'the advantages in proliferation and other signaling pathways that cells had without PD-1 go away.' Without the regulatory influence of PD-1, the over activated and over stimulated T cells result in disruption of a crucial balance between different T cell types that leads to an overall greatly reduced immune response.
The work demonstrates that even with the clinical successes of blocking PD-1, there may be a better, more refined therapeutic strategy to target the PD-1 pathway. 'We know that transient blockade has tremendous benefit,' Wherry says. 'But we also knew that there are subtypes of exhausted T cells that can or cannot be 'revitalized' by transient PD-1 blockade.
Our new work shows that PD-1 signals help regulate this balance.' In effect, PD-1 may actually help to preserve a 'reserve force' of T cells that can fight on later in the long-term cellular war between the immune system and foreign invaders or tumors.
Aside from helping to better design PD-1 blockade treatments, Wherry's findings have also helped to identify potential biomarkers in the PD-1 signaling pathway. This additional information will help in the next steps of the research, which involve more detailed study of the PD-1 at different points in its pathway and with different viral or tumor loads. 'We still don't know the molecular signals downstream of PD-1 in vivo or how PD-1 signals intersect with other immunotherapies,' Wherry says. 'We are actively addressing these questions.'
INFORMATION:
Co-authors are Pamela M. Odorizzi, Kristen E. Pauken, and Michael A. Paley, all from Penn and Arlene Sharpe, Harvard Medical School. This work was funded by a T32 HIV Pathogenesis training grant, a Robertson Foundation/Cancer Research Institute Irvington Fellowship and the National Institutes of Health (AI105343, AI112521, AI117718, AI082630, AI095608, HHSN266200500030C). Wherry has a patent licensing agreement on the PD-1 pathway, and the authors declare no additional competing financial interests.
Penn Medicine is one of the world's leading academic medical centers, dedicated to the related missions of medical education, biomedical research, and excellence in patient care. Penn Medicine consists of the Raymond and Ruth Perelman School of Medicine at the University of Pennsylvania (founded in 1765 as the nation's first medical school) and the University of Pennsylvania Health System, which together form a $4.9 billion enterprise.
The Perelman School of Medicine has been ranked among the top five medical schools in the United States for the past 17 years, according to U.S. News & World Report's survey of research-oriented medical schools. The School is consistently among the nation's top recipients of funding from the National Institutes of Health, with $409 million awarded in the 2014 fiscal year.
The University of Pennsylvania Health System's patient care facilities include: the Hospital of the University of Pennsylvania -- recognized as one of the nation's top 'Honor Roll' hospitals by U.S. News & World Report; Penn Presbyterian Medical Center; Chester County Hospital; Penn Wissahickon Hospice; and Pennsylvania Hospital -- the nation's first hospital, founded in 1751. Additional affiliated inpatient care facilities and services throughout the Philadelphia region include Chestnut Hill Hospital and Good Shepherd Penn Partners, a partnership between Good Shepherd Rehabilitation Network and Penn Medicine.
Penn Medicine is committed to improving lives and health through a variety of community-based programs and activities. In fiscal year 2014, Penn Medicine provided $771 million to benefit our community.
ELSE PRESS RELEASES FROM THIS DATE:
2015-06-03
Researchers from the University of Exeter found that the severity of ranavirosis, a devastating disease that kills thousands of frogs each year, increases in the presence of exotic fish. The use of garden chemicals was also associated with increased severity of the disease.
The study, which is published in the journal PLOS ONE, highlights the risks of releasing fish into garden ponds. Fish may amplify viral levels in the environment or cause stress hormone production that reduces immune function in wild frogs.
Lead author Alexandra North from the Environment and Sustainability ...
2015-06-03
PITTSBURGH, June 3, 2015 - Pregnant women living close to a high density of natural gas wells drilled with hydraulic fracturing were more likely to have babies with lower birth weights than women living farther from such wells, according to a University of Pittsburgh Graduate School of Public Health analysis of southwestern Pennsylvania birth records.
The finding does not prove that the proximity to the wells caused the lower birth weights, but it is a concerning association that warrants further investigation, the researchers concluded. The study was funded by The Heinz ...
2015-06-03
PHILADELPHIA - Individuals with a higher level of moral reasoning skills showed increased gray matter in the areas of the brain implicated in complex social behavior, decision making, and conflict processing as compared to subjects at a lower level of moral reasoning, according to new research from the Perelman School of Medicine and the Wharton School of the University of Pennsylvania in collaboration with a researcher from Charité Universitätsmediz in Berlin, Germany. The team studied students in the Masters of Business Administration (MBA) program at the Wharton ...
2015-06-03
Researchers have analysed the genomes of thousands of women in the UK and the Netherlands to measure the extent to which a woman's genes play a role for when she has her first baby and how many children she will have. Significantly, they have found that some women are genetically predisposed to have children earlier than others, and conclude that they have passed down their reproductive advantage to the next generation. They also find, however, that while modern women who were born in the 20th century might be expected to have babies even earlier than previous generations ...
2015-06-03
WYNNEWOOD, PA--June 3, 2015--a study led by Ellen Heber-Katz, PhD, of the Lankenau Institute for Medical Research (LIMR), part of Main Line Health (MLH), shows that a primordial form of energy production that still exists in mammals can be harnessed to achieve spontaneous tissue regeneration in mice, without the need for added stem cells. The study findings were reported in the June 3, 2015, issue of Science Translational Medicine, a peer-reviewed journal of the American Association for the Advancement of Science. Key collaborators in the study, which was supported by grants ...
2015-06-03
A lot of problems, associated with the mixing of the liquid in the microchannels, could be solved via proper organization of the inhomogeneous slip on the walls of these channels. This is the conclusion made by the joint group of Russian and German scientists lead by Olga Vinogradova, who is a professor at the M.V. Lomonosov Moscow State University and also a head of laboratory at the A.N. Frumkin Institute of Physical chemistry and Electrochemistry of the Russian Academy of Sciences. The article describing their theory was published in the latest issue of the journal ...
2015-06-03
Scientists are beginning to unwrap the biology behind why some people are more prone to major depression and other psychiatric disorders than others when experiencing stressful life events. The researchers found that cellular activity in response to stress hormone receptor activation differs from individual to individual. The study, led by Janine Arloth, Ryan Bogdan, and Elisabeth Binder at the Max Planck Institute of Psychiatry in Germany, also shows that the genetic variations underlying this difference in stress response correlate with dysfunction in the amygdala, a ...
2015-06-03
This news release is available in German. Scientists at the German Center for Neurodegenerative Diseases (DZNE) and the University of Bonn led by Prof. Stefan Remy report on this in the journal "Neuron". Their investigations give new insights into the workings of spatial memory. Furthermore, they could also help improve our understanding of movement related symptoms associated with Parkinson's disease.
In a familiar environment our movements are purposeful. For example, if we leave our office desk for a coffee break, we naturally follow a predefined route that has ...
2015-06-03
This news release is available in German.
Contaminated samples have evidently created some confusion in the timetable of life. On the basis of ultra-clean analyses, an international team, including scientists from the Max Planck Institute for Biogeochemistry, has disproved supposed evidence that eukaryotes originated 2.5 to 2.8 billion years ago. In contrast to prokaryotes such as bacteria, eukaryotes have a nucleus. Some researchers thought they had discovered molecular remnants of living organisms in rock samples up to 2.8 billion years old. However, as the ...
2015-06-03
A team of New York University neuroscientists has determined how a pair of growth factor molecules contributes to long-term memory formation, a finding that appears in the journal Neuron.
"These results give us a better understanding of memory's architecture and, specifically, how molecules act as a network in creating long-term memories," explains the paper's senior author, Thomas Carew, a professor in NYU's Center for Neural Science and dean of NYU's Faculty of Arts and Science. "More importantly, this marks another step toward elucidating the intricacies of memory ...
LAST 30 PRESS RELEASES:
[Press-News.org] Penn researchers home in on what's wearing out T cells
T cell exhaustion study has possible implications for cancer and antiviral therapies