(Press-News.org) When the new iPhone came out, customers complained that it could be bent -- but what if you could roll up your too big 6 Plus to actually fit in your pocket? That technology might be available sooner than you think, based on the work of USC Viterbi engineers.
For many decades, silicon has been the heart of modern electronics -- but as a material, it has its limits. As our devices get smaller and smaller, the basic unit of these devices, a transistor, must also get tinier and tinier. Bottom line: the size of the silicon transistor is reaching its physical limit. As silicon devices are based on what is called a top-down cutting method, it is increasingly difficult for silicon to be made even smaller. Consumers also demand phones to be lighter, faster, smaller, more flexible, wearable, bendable, etc. Yet silicon is also rigid -- one can't bend your smart phone or computer. These physical limitations have driven the race for new materials that can be used as semiconductors in lieu of silicon.
The demand for a silicon material aided the discovery of graphene, a single layer of graphite -- which won the Nobel Prize in Physics in 2010. Since this time, scientists and engineers have developed many two-dimensional (2D) material innovations -- layered materials with the thickness of only one atom or a few atoms. One such layered 2D material is black arsenic phosphorous. Now, a team of scientists at USC Viterbi, in collaboration with Technische Universität München, Germany, Universität Regensburg, Germany, and Yale University, have developed a new method to synthesize black arsenic-phosphorous without high pressure. This method demands less energy and is cheaper, and the synthesized materials have some incredible new properties.
The innovation, developed by USC Viterbi researchers, including Bilu Liu, the paper's lead author and postdoctoral researcher; Ahamad Abbas, graduate student; Han Wang, assistant professor; Rohan Dhall, graduate student; Stephen B. Cronin, associate professor; Mingyuan Ge, research assistant; Xin Fang, graduate student; and Professor Chongwu Zhou of the Ming Hsieh Department of Electrical Engineering, in concert with their collaborators, is documented in a paper titled "Black Arsenic-Phosphorus: Layered Anisotropic Infrared Semiconductors with Highly Tunable Compositions and Properties." The paper appeared in Advanced Materials on June 25, 2015.
What the researchers are most excited about is the ability to adjust the electronic and optical properties of these materials to a range that cannot be achieved by any other 2D materials thus far. This includes manipulating the materials' chemical compositions during materials synthesis and the materials' ability to sense long wavelength infrared (LWIR) waves due to their small energy gaps. This particular electromagnetic spectral range of LWIR is important for a range of applications such as LIDAR (light radar) systems, basically because LWIR waves are highly transparent in earth atmosphere. This wave range also has great application for the soldiers in the military who rely on infrared thermal imaging technology and for flexible night vision glasses. Another intriguing aspect of these new layeredsemiconductors is their anisotropic electronic and optical properties, which means the materials have different properties along x and y direction in the same plane. The researchers believe these are marked improvement from existing materials and devices and would lead to unique applications.
In addition, the researchers anticipate that it could also lead to important improvement for devices that monitor the environment. "We believe these materials are important members in a large family of 2D materials, because they fit into the long-wavelength-infrared light range and deliver properties that any other currently existing 2D materials cannot," said Zhou, the research team leader.
According to Liu, the paper's lead author: "As these are rather new materials, we anticipate there is lots of exciting fundamental physics research as well as engineering work to be done. For example, what's the electronic and optical properties of a truly single layer black arsenic phosphorus?"
INFORMATION:
This work was supported by Office of Naval Research (ONR), the Air Force Office of Scientific Research (AFOSR), the King Abdul-Aziz City for Science and Technology (KACST), the Center of Excellence for Nanotechnologies (CEGN), and the Deutsche Forschungsgemeinschaft (DFG).
About the USC Viterbi School of Engineering
Engineering Studies began at the University of Southern California in 1905. Nearly a century later, the Viterbi School of Engineering received a naming gift in 2004 from alumnus Andrew J. Viterbi, inventor of the Viterbi algorithm now key to cell phone technology and numerous data applications. Consistently ranked among the top graduate programs in the world, the school enrolls more than 6,500 undergraduate and graduate students, taught by 180 tenured and tenure-track faculty, with 73 endowed chairs and professorships. http://viterbi.usc.edu/
Toxic environmental contaminants are increasingly known to cause a number of severe health problems, in particular on fetuses, including heart failure, low cognitive ability, delayed development, and neurobehavioral disorders.
A new research featured in the Environmental Science and Technology published by the American Chemical Society suggests that the fetus is more vulnerable to some pollutants with certain properties because they penetrate further into the feto-maternal system. The research found that distributions of pollutants and the mechanisms of distributions ...
Researchers at University of California, San Diego School of Medicine have discovered a self-regulating loop in the Hippo pathway, a signaling channel garnering increased attention from cancer researchers due to its role in controlling organ size, cell proliferation and cell death.
The finding, published June 26 online in the journal Genes & Development, provides new insights about how the Hippo pathway maintains cellular balance, a subject of growing interest since its malfunction can lead to uncontrolled cell growth and inhibition of cell death - two hallmarks of cancer. ...
Nashville, Tenn., June 26, 2015--Daily bathing of pediatric patients with disposable cloths containing 2 percent chlorhexidine gluconate (CHG) reduced central line-associated bloodstream infections (CLABSIs) by 59 percent and saved approximately $300,000 in one hospital over a six-month period, according to a new study.
The study, to be presented on Saturday, June 27, at the 42nd Annual Conference of the Association for Professionals in Infection Control and Epidemiology (APIC), examined the impact of implementing a daily CHG bathing protocol for all pediatric patients ...
New research reveals that it only takes two weeks of not using their legs for young people to lose a third of their muscular strength, leaving them on par with a person who is 40-50 years their senior. The Center for Healthy Aging and the Department of Biomedical Sciences at the University of Copenhagen conducted the research.
Time and again, we are told that we need to stay physically active and exercise daily. But how quickly do we actually lose our muscular strength and muscle mass if we go from being averagely active to being highly inactive? For example when we are ...
Scientists at Newcastle University have documented for the first time the DNA damage which can occur to skin across the full range of ultraviolet radiation from the sun providing an invaluable tool for sun-protection and the manufacturers of sunscreen.
Testing on human skin cell lines, this study published today in The Society for Investigative Dermatology, documents the action spectrum of ultraviolet damage in cells derived from both the upper layer (dermis) and lower layer (epidermis) of the skin.
This will allow manufacturers of sunscreen to develop and test products ...
A watershed is a basic unit of the land-surface system and also is a system that exchanges material, energy, and information with the external world while remaining relatively closed within a clear boundary, thereby making it the best unit for theory study and practical applications. Watershed science is an Earth system science practiced on a watershed scale and it has developed rapidly over the previous two decades. The goal of watershed science is to understand and predict the behavior of complex watershed systems and support the sustainable development of watersheds. ...
Food allergies now impacting children of all races and incomes
Hispanic children have highest rise in emergency visits for food allergies
Peanut and tree nuts followed by milk reactions were the most frequent cause of visits
CHICAGO --- Emergency room visits and hospitalizations of children with severe, potentially life-threatening food allergy reactions increased nearly 30 percent in Illinois over five years, reports a Northwestern Medicine study.
Hispanic children, who previously had the lowest reported cases of food allergies, had the biggest increase of emergency ...
A simple new computerised game could help people control their snacking impulses and lose weight. Psychologists at the University of Exeter and Cardiff University have today published a study that shows that participants lost an average of 0.7kg and consumed around 220 fewer calories a day whilst undergoing the week of training.
With 64% of adults in the UK overweight or obese, the research opens up exciting possibilities that 'brain training' techniques specifically targeting problematic behaviours - such as overeating and drinking alcohol - might help people to take ...
A federal preschool program did more than improve educational opportunities for poor children in Mississippi during the 1960s. The program also gave a political and economic boost to the state's civil rights activists, according to a Penn State historian.
A key provision of the federal Economic Opportunity Act of 1964, which paved the way for several federal anti-poverty programs, was aimed at empowering the poor and sidestepping black disenfranchisement in the south, according to Crystal Sanders, an assistant professor of history and African American studies. Sanders ...
A new test can accurately diagnose Ebola virus disease within minutes, providing clinicians with crucial information for treating patients and containing outbreaks.
Researchers from Harvard Medical School, Partners In Health and Boston Children's Hospital have shown that a new commercially developed rapid diagnostic test performed at bedside was as sensitive as the conventional laboratory-based method used for clinical testing during the recent outbreak in Sierra Leone. The results are published in The Lancet.
While the West African Ebola epidemic has slowed since its ...