(Press-News.org) CAMBRIDGE, MA -- Nitrous oxide, commonly known as "laughing gas," has been used in anesthesiology practice since the 1800s, but the way it works to create altered states is not well understood. In a study published this week in Clinical Neurophysiology, MIT researchers reveal some key brainwave changes among patients receiving the drug.
For a period of about three minutes after the administration of nitrous oxide at anesthetic doses, electroencephalogram (EEG) recordings show large-amplitude slow-delta waves, a powerful pattern of electrical firing that sweeps across the front of the brain as slowly as once every 10 seconds.
This frequency is characteristic of our deepest sleep, but the waves induced by nitrous oxide are twice as large as -- and seemingly more powerful than -- the ones seen in slumber. "We literally watched it and marveled, because it was totally unexpected," says Emery Brown, the Edward Hood Taplin Professor of Medical Engineering at MIT and an anesthesiologist at Massachusetts General Hospital (MGH). "Nitrous oxide has control over the brain in ways no other drug does."
Brown was joined in the research by co-authors Kara Pavone, Oluwaseun Akeju, Aaron Sampson, Kelly Ling, and Patrick Purdon, all of MGH.
The discovery came after Brown began recording EEG readings from all of his anesthesiology patients, starting in 2012. A sticker with six electrodes is placed on the forehead to measure voltage fluctuations resulting from the collective effect of neurons communicating in the brain. This EEG signal feeds into a computer that records it and displays the data as waves on a monitor in the operating room. The technique is safe and noninvasive.
When family doctors explain anesthesia, they sometimes describe it as "putting a patient to sleep," using the metaphor of our closest experiential comparison. But sleep is nothing like anesthesia; it is a natural physiological state of decreased arousal during which the brain cycles naturally between rapid eye movement (REM) and non-REM states approximately every 90 minutes. Someone can easily be awakened from even the deepest stages of sleep.
Anesthesia, by comparison, is a drug-induced, reversible coma during which a patient is unconscious, cannot remember, feels no pain, and does not move -- yet is physiologically stable. This state of coma remains as long as the flow of drugs is maintained, and patients awake from anesthesia with the sensation that no time has passed.
Nitrous oxide is commonly administered at the tail end of surgery, to keep a patient unconscious while more potent ether anesthetics clear from his or her system, or is administered along with the ether anesthetics throughout an operation to reduce the doses of the latter.
Brown says that anesthesiologists should use an EEG to monitor the brain states of their patients under anesthesia -- which could make better anesthetic dosing decisions possible and alleviate concerns about awareness under anesthesia. "It's hard to imagine that in 2015 you can just anecdotally observe this," Brown says.
He speculates that if the pure, powerful slow waves produced by nitrous oxide could somehow be maintained at a steady state -- as opposed to disappearing in mere minutes -- then nitrous oxide might be used as a potent anesthetic from which rapid recovery would be possible.
It remains a mystery why these large, slow waves only continue for around three minutes, despite continuous administration of nitrous oxide. Brown says there appears to be a sort of rapid habituation or desensitization process at work.
He postulates that nitrous oxide may block signals from the brainstem that would otherwise maintain wakefulness. When certain receptors in the thalamus and cortex are not bound by nitrous oxide, these brain regions normally receive excitatory signals from arousal centers lower in the brain. Without those signals, loss of consciousness occurs, marked by slow waves. "If you see slow EEG oscillations, think of something having happened to the brainstem," Brown says.
"It is worth pointing out that nitrous oxide has been shown previously to affect these low-frequency oscillations, but by causing a decrease rather than an increase," says neurobiologist David Liley of Swinburne University of Technology in Australia, who was not involved in the research.
Previous research has largely explored lower doses of nitrous oxide -- levels at which it is considered a sedative, inducing faster beta oscillations in the brain, which are indicative of relaxation but not loss of consciousness. "The nice thing about Emery's study is that they could use high concentrations at high flow rates, which if used alone in healthy, initially conscious volunteers would cause way too much nausea and vomiting," Liley says.
Brown and his team are now systematically studying the EEG signatures and behavioral effects of all of the principal anesthetics and anesthetic combinations.
INFORMATION:
The human organism contains hundreds of distinct cell types that often differ from their neighbours in shape and function. To acquire and maintain its characteristic features, each cell type must express a unique subset of genes. Neurons, the functional units of our brain, develop through differentiation of neuronal precursors, a process that depends on coordinated activation of hundreds and possibly thousands of neuron-specific genes.
A new study published in Nature Communications by researchers from the MRC Centre for Developmental Neurobiology (MRC CDN) at IoPPN, carried ...
Intermittent dosing with rapamycin selectively breaks the cascade of inflammatory events that follow cellular senescence, a phenomena in which cells cease to divide in response to DNA damaging agents, including many chemotherapies. The finding, published in Nature Cell Biology, shows that once disrupted, it takes time for the inflammatory loop to reestablish, providing proof-of-principal that intermittent dosing could provide a way to reap the benefits of rapamycin, an FDA-approved drug that extends lifespan and healthspan in mice, while lessening safety issues associated ...
Carrying around a spare tire is a good thing -- you never know when you'll get a flat. Turns out we're all carrying around "spare tires" in our genomes, too. Today, in ACS Central Science, researchers report that an extra set of guanines (or "G"s) in our DNA may function just like a "spare" to help prevent many cancers from developing.
Various kinds of damage can happen to DNA, making it unstable, which is a hallmark of cancer. One common way that our genetic material can be harmed is from a phenomenon called oxidative stress. When our bodies process certain chemicals ...
One of the questions raised by climate change has been whether it could cause more species of animals to interbreed. Two species of flying squirrel have already produced mixed offspring because of climate change, and there have been reports of a hybrid polar bear and grizzly bear cub (known as a grolar bear, or a pizzly).
"Climate change is causing species' ranges to shift, and that could bring a lot of closely related species into contact," said Meade Krosby, a research scientist in the University of Washington's Climate Impacts Group.
She is the lead author of a ...
Screening mammography was associated with increased diagnosis of small cancers in a study across U.S. counties but not with significant changes in breast cancer deaths or a decreased incidence of larger breast cancers, which researchers suggest may be the result of overdiagnosis, according to an article published online by JAMA Internal Medicine.
The goal of screening mammography is to reduce breast cancer death by detecting and treating cancer early in the course of the disease. If screening detects tumors early, the diagnosis of smaller and more treatable cancers should ...
Many physicians and advanced practice clinicians, including registered nurse practitioners, midwives and physician assistants, reported to work while being sick despite recognizing this could put patients at risk, according to the results of a small survey published online by JAMA Pediatrics.
Health-care associated infections can lead to substantial illness and death and excess costs. This is especially true for immunocompromised patients and others at high risk, including neonates. However, a gap in knowledge exists about the reasons why attending physicians and advanced ...
A small fraction of pregnancies occur in women with epilepsy but a new study suggests those women may be at higher risk for complications and death during delivery, according to an article published online by JAMA Neurology.
Between 0.3 percent and 0.5 percent of all pregnancies occur in women with epilepsy. However, there is inadequate data on obstetrical outcomes so the risk of adverse outcomes and death in this population of women remains largely unquantified.
Sarah C. MacDonald, B.Sc., of the Harvard T.H. Chan School of Public Health, Boston, and coauthors looked ...
Cognitive behavioral therapy is a widely used nonpharmacologic treatment for insomnia disorders and an analysis of the medical literature suggests it also can work for patients whose insomnia is coupled with psychiatric and medical conditions, according to an article published online by JAMA Internal Medicine.
Previous meta-analyses have suggested that cognitive behavioral therapy for insomnia can improve sleep, although many of these studies excluded individuals with co-existing psychiatric and medical conditions.
Jason C. Ong, Ph.D., of Rush University Medical Center, ...
MADISON - The newfound ability of a protein of the intestines and lungs to distinguish between human cells and the cells of bacterial invaders could underpin new strategies to fight infections.
Writing this week (July 6, 2015) in the journal Nature Structural and Molecular Biology, a team led by University of Wisconsin-Madison Professor Laura Kiessling describes the knack of a human protein known as intelectin to distinguish between our cells and those of the disease-causing microbes that invade our bodies.
"This has the potential to change the game in terms of how ...
Studying brain scans and cerebrospinal fluid of healthy adults, scientists have shown that changes in key biomarkers of Alzheimer's disease during midlife may help identify those who will develop dementia years later, according to new research.
The study, at Washington University School of Medicine in St. Louis, is published July 6 in JAMA Neurology.
"It's too early to use these biomarkers to definitively predict whether individual patients will develop Alzheimer's disease, but we're working toward that goal," said senior author Anne Fagan, PhD, a professor of neurology. ...