PRESS-NEWS.org - Press Release Distribution
PRESS RELEASES DISTRIBUTION

Lynchpin molecule for the spread of cancer found

A single molecule called DNA-PKcs may drive metastatic processes that turn cancer from a slowly growing relatively benign disease to a killer

2015-07-13
(Press-News.org) (PHILADELPHIA) - Cancer is a disease of cell growth, but most tumors only become lethal once they metastasize or spread from their first location to sites throughout the body. For the first time, researchers at Thomas Jefferson University in Philadelphia report a single molecule that appears to be the central regulator driving metastasis in prostate cancer. The study, published online July 13th in Cancer Cell, offers a target for the development of a drug that could prevent metastasis in prostate cancer, and possibly other cancers as well.

"Finding a way to halt or prevent cancer metastasis has proven elusive. We discovered that a molecule called DNA-PKcs could give us a means of knocking out major pathways that control metastasis before it begins," says Karen Knudsen, Ph.D., Director of the Sidney Kimmel Cancer Center at Thomas Jefferson University, the Hilary Koprowski Professor and Chair of Cancer Biology, Professor of Urology, Radiation Oncology, and Medical Oncology at Jefferson.

Metastasis is thought of as the last stage of cancer. The tumor undergoes a number of changes to its DNA - mutations - that make the cells more mobile, able to enter the bloodstream, and then also sticky enough to anchor down in a new location, such as the bone, the lungs, the liver or other organs, where new tumors start to grow. Although these processes are fairly well characterized, there appeared to be many non-overlapping pathways that ultimately lead to these traits.

Now, Dr. Knudsen and colleagues have shown that one molecule appears to be central to many of the processes required for a cancer to spread. That molecule is a DNA repair kinase called DNA-PKcs. The kinase rejoins broken or mutated DNA strands in a cancer cell, acting as a glue to the many broken pieces of DNA and keeping alive a cell that should normally self-destruct. In fact, previous studies had shown that DNA-PKcs was linked to treatment resistance in prostate cancer, in part because it would repair the usually lethal damage to tumors caused by radiation therapy and other treatments. Importantly, Dr. Knudsen's work showed that DNA-PKcs has other, far-reaching roles in cancer.

The researchers showed that DNA-PKcs also appears act as a master regulator of signaling networks that turn on the entire program of metastatic processes. Specifically, the DNA-PKcs modulates the Rho/Rac enzyme, which allows many cancer cell types to become mobile, as well as a number of other gene networks involved in other steps in the metastatic cascade, such as cell migration and invasion.

In addition to experiments in prostate cancer cell lines, Dr. Knudsen and colleagues also showed that in mice carrying human models of prostate cancer, they could block the development of metastases by using agents that suppress DNA-PKcs production or function. And in mice with aggressive human tumors, an inhibitor of DNA-PKcs reduced overall tumor burden in metastatic sites.

In a final analysis that demonstrated the importance of DNA-PKcs in human disease, the researchers analyzed 232 samples from prostate cancer patients for the amount of DNA-PKcs those cells contained and compared those levels to the patients' medical records. They saw that a spike in the kinase levels was a strong predictor of developing metastases and poor outcomes in prostate cancer. They also showed that DNA-PKcs was much more active in human samples of castrate-resistant prostate cancer, an aggressive and treatment-resistant form of the disease.

"These results strongly suggest that DNA-PKcs is a master regulator of the pathways and signals that lead to the development of metastases in prostate cancer, and that high levels of DNA-PKcs could predict which early stage tumors may go on to metastasize," says Dr. Knudsen.

"The finding that DNA-PKcs is a likely driver of lethal disease states was unexpected, and the discovery was made possible by key collaborations across academia and industry," explains Dr. Knudsen. Key collaborators on the study, in addition to leaders of the Sidney Kimmel Cancer Center's Prostate Program, included the laboratories of Felix Feng (University of Michigan), Scott Tomlins (University of Michigan), Owen Witte (UCLA), Cory Abate-Shen (Columbia University), Nima Sharifi (Cleveland Clinic) and Jeffrey Karnes (Mayo Clinic), and contributions from GenomeDx.

Although not all molecules are easily turned into drugs, at least one pharma company has already developed a drug that inhibits DNA-PKcs, and is currently testing it in a phase 1 study (NCT01353625). "We are enthusiastic about the next step of clinical assessment for testing DNA-PKcs inhibitors in the clinic. A new trial will commence shortly using the Celgene CC-115 DNA-PKcs inhibitor. This new trial will be for patients advancing on standard of care therapies, and will be available at multiple centers connected through the Prostate Cancer Clinical Trials Consortium, of which we are a member," explained Dr. Knudsen.

"Although the pathway to drug approval can take many years, this new trial will provide some insight into the effect of DNAP-PKcs inhibitors as anti-tumor agents. In parallel, using this kinase as a marker of severe disease may also help identify patients whose tumors will develop into aggressive metastatic disease, so that we can treat them with more aggressive therapy earlier," says Dr. Knudsen. "Given the role of DNA-PKcs in DNA repair as well as control of tumor metastasis, there will be challenges in clinical implementation, but this discovery unveils new opportunities for preventing or treating advanced disease."

INFORMATION:

For more information, contact Edyta Zielinska, 215-955-5291, edyta.zielinska@jefferson.edu, or Gail Benner, 215-955-2240, gail.benner@jefferson.edu

Article reference: J. F. Goodwin et al., "DNA-PKcs mediated transcriptional regulation drives prostate cancer progression and metastasis," Cancer Cell, 2015.

About Jefferson -- Health is all we do. Our newly formed organization, Jefferson, encompasses Jefferson Health and Thomas Jefferson University, representing our clinical and academic entities. Together, the people of Jefferson, 19,000 strong, provide the highest-quality, compassionate clinical care for patients, educate the health professionals of tomorrow, and discover new treatments and therapies that will define the future of health care.

Thomas Jefferson University is home to the Sidney Kimmel Cancer Center, one of 68 NCI-designated Cancer Centers of excellence nationwide. The Sidney Kimmel Cancer Center is compromised of laboratory and clinic-based investigators working together to bring convert discoveries into the most advanced care for cancer patients.

Jefferson Health comprises five hospitals, 13 outpatient and urgent care centers, as well as physician practices and everywhere we deliver care throughout the city and suburbs across Philadelphia, Montgomery and Bucks Counties in Pa., and Camden County in New Jersey. Together, these facilities serve more than 78,000 inpatients, 238,000 emergency patients and 1.7 million outpatient visits annually. Thomas Jefferson University Hospital is the largest freestanding academic medical center in Philadelphia. Abington Hospital is the largest community teaching hospital in Montgomery or Bucks counties. Other hospitals include Jefferson Hospital for Neuroscience in Center City Philadelphia; Methodist Hospital in South Philadelphia; and Abington-Lansdale Hospital in Hatfield Township.

Thomas Jefferson University enrolls more than 3,900 future physicians, scientists, nurses and healthcare professionals in the Sidney Kimmel Medical College (SKMC); Jefferson Schools of Health Professions, Nursing, Pharmacy, Population Health; and the Graduate School of Biomedical Sciences.

For more information and a complete listing of Jefferson services and locations, visit http://www.jefferson.edu.



ELSE PRESS RELEASES FROM THIS DATE:

Eating wild, foraged mushrooms can result in liver failure or death as misidentification is common

2015-07-13
Foraging and eating wild mushrooms can result in liver failure and even death because mistaking toxic mushrooms for edible varieties is common, illustrates a case published in CMAJ (Canadian Medical Association Journal) "Distinguishing safe from harmful mushrooms is a challenge even for mycologists," writes Dr. Adina Weinerman, Division of General Internal Medicine, Sunnybrook Health Sciences Centre, Toronto, Ontario, with coauthors. The case focuses on a previously healthy 52-year-old immigrant woman of Asian descent who had foraged for wild mushrooms in a local park ...

New drug combo could make cancer more sensitive to chemo

2015-07-13
Combining chemotherapy with new drugs that target a protein that helps cancer cells to withstand chemotherapy could drastically improve treatment, according to research published in Cancer Cell. Researchers at the University of Manchester carefully studied a network of proteins that kick into action when cancer cells in the lab are treated with a class of chemotherapy drugs called taxanes*. These drugs are commonly used to treat several cancers - including breast, ovarian and prostate cancers. But not all cancers respond to them, and it's difficult to predict which patients ...

Scientists identify new compounds that may treat depression rapidly with few side effects

2015-07-13
Baltimore, Md., July 13, 2015 - A new study by researchers at University of Maryland School of Medicine has identified promising compounds that could successfully treat depression in less than 24 hours while minimizing side effects. Although they have not yet been tested in people, the compounds could offer significant advantages over current antidepressant medications. The research, led by Scott Thompson, PhD, Professor and Chair of the Department of Physiology at the University of Maryland School of Medicine (UM SOM), was published this month in the journal Neuropsychopharmacology. "Our ...

Polymer mold makes perfect silicon nanostructures

2015-07-13
Using molds to shape things is as old as humanity. In the Bronze Age, the copper-tin alloy was melted and cast into weapons in ceramic molds. Today, injection and extrusion molding shape hot liquids into everything from car parts to toys. For this to work, the mold needs to be stable while the hot liquid material hardens into shape. In a breakthrough for nanoscience, Cornell polymer engineers have made such a mold for nanostructures that can shape liquid silicon out of an organic polymer material. This paves the way for perfect, 3-D, single crystal nanostructures. The ...

Learning impacts how the brain processes what we see

2015-07-13
From the smell of flowers to the taste of wine, our perception is strongly influenced by prior knowledge and expectations, a cognitive process known as top-down control. In a University of California, San Diego School of Medicine study published July 13 in the online journal Nature Neuroscience, a research team led by Takaki Komiyama, PhD, assistant professor of neurosciences and neurobiology, reports that in mouse models, the brain significantly changed its visual cortex operation modes by implementing top-down processes during learning. "We found that when the mouse ...

Online registry improves clinical research study participation

2015-07-13
LOS ANGELES (July 13, 2015) - Research for Her™, Cedars-Sinai's groundbreaking online registry that matches women with research studies and clinical trials, enrolled study participants more quickly when compared with traditional paper-based registries, according to new research published in the journal Gynecologic Oncology. Historically, fewer women have participated in clinical research and only 3 to 5 percent of patients nationally enroll in trials. "Research for Her is committed to changing these statistics and improving patient lives," said B.J. Rimel, ...

Study links leisure time sitting to higher risk of specific cancers

2015-07-13
Spending more leisure time sitting was associated with a higher risk of total cancer risk in women, and specifically with multiple myeloma, breast, and ovarian cancers, according a new study. The higher risk was present even after taking into account BMI, physical activity, and other factors. The study, appearing in Cancer Epidemiology, Biomarkers, and Prevention, found no association between sitting time and cancer risk in men. While extensive research links physical activity to cancer prevention, few studies have examined the link between sitting time and the risk of ...

Researchers find nanowires have unusually pronounced 'anelastic' properties

2015-07-13
Researchers from North Carolina State University and Brown University have found that nanoscale wires (nanowires) made of common semiconductor materials have a pronounced anelasticity - meaning that the wires, when bent, return slowly to their original shape rather than snapping back quickly. "All materials have some degree of anelasticity, but it is usually negligible at the macroscopic scale," says Yong Zhu, an associate professor of mechanical and aerospace engineering at NC State and corresponding author of a paper describing the work. "Because nanowires are so small, ...

Skin cancer marker plays critical role in tumor growth

2015-07-13
New research from the Johns Hopkins Bloomberg School of Public Health suggests that the protein keratin 17 - the presence of which is used in the lab to detect and stage various types of cancers - is not just a biomarker for the disease, but may play a critical role in tumor growth. This new understanding of how keratin 17 works, the researchers say, could lead to the development of better ways to detect and prevent cancer, and identify new targets for therapeutic treatment. A report on the findings is published July 13 in Nature Genetics. "Keratin 17 is a sensitive ...

Environmentally friendly lignin nanoparticle 'greens' silver nanobullet to battle bacteria

2015-07-13
North Carolina State University researchers have developed an effective and environmentally benign method to combat bacteria by engineering nanoscale particles that add the antimicrobial potency of silver to a core of lignin, a ubiquitous substance found in all plant cells. The findings introduce ideas for better, greener and safer nanotechnology and could lead to enhanced efficiency of antimicrobial products used in agriculture and personal care. In a study being published in Nature Nanotechnology July 13, NC State engineer Orlin Velev and colleagues show that silver-ion ...

LAST 30 PRESS RELEASES:

State-wide center for quantum science: Karlsruhe Institute of Technology joins IQST as a new partner

Cellular traffic congestion in chronic diseases suggests new therapeutic targets

Cervical cancer mortality among US women younger than age 25

Fossil dung reveals clues to dinosaur success story

New research points way to more reliable brain studies

‘Alzheimer’s in dish’ model shows promise for accelerating drug discovery

Ultraprocessed food intake and psoriasis

Race and ethnicity, gender, and promotion of physicians in academic medicine

Testing and masking policies and hospital-onset respiratory viral infections

A matter of life and death

Huge cost savings from more efficient use of CDK4/6 inhibitors in metastatic breast cancer reported in SONIA study

What a gut fungus reveals about symbiosis and allergy

Insilico Medicine recognized by Endeavor Venture Group & Mount Sinai Health System with Showcase AI and Biotech Innovation Award

ESMO Asia Congress 2024: Event Announcement

The pathophysiological relationship and treatment progress of obstructive sleep apnea syndrome, obesity, and metabolic syndrome

“Genetic time machine” reveals complex chimpanzee cultures

Earning money while making the power grid more stable – energy consumers have a key role in supporting grid flexibility

No ‘one size fits all’ treatment for Type 1 Diabetes, study finds

New insights into low-temperature densification of ceria-based barrier layers for solid oxide cells

AI Safety Institute launched as Korea’s AI Research Hub

Air pollution linked to longer duration of long-COVID symptoms

Soccer heading damages brain regions affected in CTE

Autism and neural dynamic range: insights into slower, more detailed processing

AI can predict study results better than human experts

Brain stimulation effectiveness tied to learning ability, not age

Making a difference: Efficient water harvesting from air possible

World’s most common heart valve disease linked to insulin resistance in large national study

Study unravels another piece of the puzzle in how cancer cells may be targeted by the immune system

Long-sought structure of powerful anticancer natural product solved by integrated approach

World’s oldest lizard wins fossil fight

[Press-News.org] Lynchpin molecule for the spread of cancer found
A single molecule called DNA-PKcs may drive metastatic processes that turn cancer from a slowly growing relatively benign disease to a killer