(Press-News.org) CAMBRIDGE, Mass--Two key physical phenomena take place at the surfaces of materials: catalysis and wetting. A catalyst enhances the rate of chemical reactions; wetting refers to how liquids spread across a surface.
Now researchers at MIT and other institutions have found that these two processes, which had been considered unrelated, are in fact closely linked. The discovery could make it easier to find new catalysts for particular applications, among other potential benefits.
"What's really exciting is that we've been able to connect atomic-level interactions of water and oxides on the surface to macroscopic measurements of wetting, whether a surface is hydrophobic or hydrophilic, and connect that directly with catalytic properties," says Yang Shao-Horn, the W.M. Keck Professor of Energy at MIT and a senior author of a paper describing the findings in the Journal of Physical Chemistry C. The research focused on a class of oxides called perovskites that are of interest for applications such as gas sensing, water purification, batteries, and fuel cells.
Since determining a surface's wettability is "trivially easy," says senior author Kripa Varanasi, an associate professor of mechanical engineering, that determination can now be used to predict a material's suitability as a catalyst. Since researchers tend to specialize in either wettability or catalysis, this produces a framework for researchers in both fields to work together to advance understanding, says Varanasi, whose research focuses primarily on wettability; Shao-Horn is an expert on catalytic reactions.
"We show how wetting and catalysis, which are both surface phenomena, are related," Varanasi says, "and how electronic structure forms a link between both."
While both effects are important in a variety of industrial processes and have been the subject of much empirical research, "at the molecular level, we understand very little about what's happening at the interface," Shao-Horn says. "This is a step forward, providing a molecular-level understanding."
"It's primarily an experimental technique" that made the new understanding possible, explains Kelsey Stoerzinger, an MIT graduate student and the paper's lead author. While most attempts to study such surface science use instruments requiring a vacuum, this team used a device that could study the reactions in humid air, at room temperature, and with varying degrees of water vapor present. Experiments using this system, called ambient pressure X-ray photoelectron spectroscopy, revealed that the reactivity with water is key to the whole process, she says.
The water molecules break apart to form hydroxyl groups -- an atom of oxygen bound to an atom of hydrogen -- bonded to the material's surface. These reactive compounds, in turn, are responsible for increasing the wetting properties of the surface, while simultaneously inhibiting its ability to catalyze chemical reactions. Therefore, for applications requiring high catalytic activity, the team found, a key requirement is that the surface be hydrophobic, or non-wetting.
"Ideally, this understanding helps us design new catalysts," Stoerzinger says. If a given material "has a lower affinity for water, it has a higher affinity for catalytic activity."
Shao-Horn notes that this is an initial finding, and that "extension of these trends to broader classes of materials and ranges of hydroxyl affinity requires further investigation." The team has already begun further exploration of these areas. This research, she says, "opens up the space of materials and surfaces we might think about" for both catalysis and wetting.
INFORMATION:
The research team also included graduate student Wesley Hong, visiting scientist Livia Giordano, and postdocs Yueh-Lin Lee and Gisele Azimi at MIT; Ethan Crumlin and Hendrik Bluhm at Lawrence Berkeley National Laboratory; and Michael Biegalski at Oak Ridge National Laboratory. The work was supported by the National Science Foundation and the U.S. Department of Energy.
A team of scientists has linked changes in the structure of a handful of central brain neurons to understanding how animals adjust to changing seasons. Its findings enhance our understanding of the mechanisms vital to the regulation of our circadian system, or internal clock.
The work, which appears in the journal Cell, focuses on the regulation of "neuronal plasticity"--changes in neuronal structure--and its function in the brain.
"Neuronal plasticity underpins learning and memory, but it is very challenging to tie changes in specific neurons to alterations in animal ...
Despite their remarkably similar appearance, the "golden jackals" of East Africa and Eurasia are actually two entirely different species. The discovery, based on DNA evidence and reported in the Cell Press journal Current Biology on July 30, increases the overall biodiversity of the Canidae--the group including dogs, wolves, foxes, and jackals--from 35 living species to 36.
"This represents the first discovery of a 'new' canid species in Africa in over 150 years," says Klaus-Peter Koepfli of the Smithsonian Conservation Biology Institute in Washington, DC.
The new study, ...
The desire to quit smoking--often considered a requirement for enrolling in treatment programs--is not always necessary to reduce cigarette cravings, argues a review of addiction research published July 30 in Trends in Cognitive Sciences. Early evidence suggests that exercises aimed at increasing self-control, such as mindfulness meditation, can decrease the unconscious influences that motivate a person to smoke.
Scientists are looking to the brain to understand why setting a "quit day" isn't a surefire way to rid oneself of a cigarette habit. Recent neuroimaging studies ...
A study that took a novel approach to investigating factors affecting the emergence of symptoms of Huntington's disease (HD) has identified at least two genome sites that house variants that can hasten or delay symptom onset. In their report in the July 30 issue of Cell, the multi-institutional research team describes how genome-wide association analysis of samples from more than 4,000 HD patients found that particular variants on two chromosomes were more common in individuals who first exhibited HD-associated movement disorders either earlier or later than would otherwise ...
Not every mom and dad agree on how their offspring should behave. But in genetics as in life, parenting is about knowing when your voice needs to be heard, and the best ways of doing so. Typically, compromise reigns, and one copy of each gene is inherited from each parent so that the two contribute equally to the traits who make us who we are. Occasionally, a mechanism called genomic imprinting, first described 30 years ago, allows just one parent to be heard by completely silencing the other.
Now, researchers at the University of Utah School of Medicine report on a ...
A new imaging tool developed by Boston scientists could do for the brain what the telescope did for space exploration. In the first demonstration of how the technology works, published July 30 in the journal Cell, the researchers look inside the brain of an adult mouse at a scale previously unachievable, generating images at a nanoscale resolution. The inventors' long-term goal is to make the resource available to the scientific community in the form of a national brain observatory.
"I'm a strong believer in bottom up-science, which is a way of saying that I would prefer ...
Oropharyngeal cancer patients who were found to have detectable traces of human papillomavirus type 16 (HPV16) in their saliva following cancer treatment are at an increased risk for recurrence, a study led by researchers at the Johns Hopkins Bloomberg School of Public Health has found.
The oropharynx is the area of the upper throat that includes the back of the tongue, the soft palate, the tonsils and the walls of the throat. Oropharyngeal cancer accounts for 2.8 percent of new cancers in the United States; it is often treated successfully with surgery.
In a small ...
In the last two decades, prosthetic limb technology has grown by leaps and bounds. Today, the most advanced prostheses incorporate microprocessors that work with onboard gyroscopes, accelerometers, and hydraulics to enable a person to walk with a normal gait. Such top-of-the-line prosthetics can cost more than $50,000.
Amos Winter is aiming to develop a passive, low-tech prosthetic knee that performs nearly as well as high-end prosthetics, at a fraction of the cost.
"We're going after this disruptive opportunity," says Winter, an assistant professor of mechanical ...
NEW YORK, July 30, 2015 - Major achievements have been made in the domestic HIV/AIDS response as a result of increased realignment and coordination of efforts at the federal level. However, that level of consistent coordination and alignment has yet to take place in most states. In an effort to identify what needs to be done, amfAR, The Foundation for AIDS Research, in collaboration with the National HIV/AIDS Initiative at the O'Neill Institute for National and Global Health Law at Georgetown Law, has released a set of recommendations for how states across the U.S. can ...
BUFFALO, N.Y. - A little recognition for a job well done means a lot to children with Attention Deficit/Hyperactivity Disorder (ADHD) - more so than it would for typically developing kids.
That praise, or other possible reward, improves the performance of children with ADHD on certain cognitive tasks, but until a recent study led by researchers from the University at Buffalo, it wasn't clear if that result was due to heightened motivation inspired by positive reinforcement or because those with ADHD simply had greater room for improvement at certain tasks relative to ...