Innovative battery chemistry revolutionizes zinc-air battery
International Research Cooperation for Sustainable Batteries of the Future; publication in the Journal 'Science'
2021-01-04
(Press-News.org) High-performance, eco-friendly, safe and at the same time cost-effective: the zinc-air battery is an attractive energy storage technology of the future. Until now, the conventional zinc-air battery has struggled with a high chemical instability, parasitic reactions which rooted in the usage of alkaline electrolytes lead to electrochemical irreversibility. Based on an innovative, non-alkaline, aqueous electrolyte, an international research team led by scientist Dr. Wei Sun of MEET Battery Research Center at the University of Muenster has developed a new battery chemistry for the zinc-air battery which overcomes the previous technical obstacles. The scientific team has published the detailed results of their research project, involving researchers from Fudan University in Shanghai, the University of Science and Technology in Wuhan, the University of Maryland and the US Army Research Laboratory, in the journal "Science".
Key parameters of the zinc-air battery optimised
"Our innovative, non-alkaline electrolyte brings a previously unknown reversible zinc peroxide (ZnO2)/O2 chemistry into the zinc-air battery", explains Dr. Wei Sun. Compared with the conventionally strong alkaline electrolytes, the newly developed non-alkaline aqueous electrolyte, which is based on the zinc trifluoromethanesulfonate salt, has several decisive advantages: The zinc anode is used more efficiently with a higher chemical stability and electrochemical reversibility. The full zinc-air batteries thus constructed can long-term operate stably for 320 cycles and 1,600 hours under ambient air atmosphere.
The mechanism of this ZnO2/O2 battery chemistry and the role of the hydrophobic trifluoromethanesulfonate anion were systematically revealed using well-designed electrochemical, analytical techniques and multiscale simulations. The identified increased energy density has now the potential to compete with the lithium-ion battery currently dominating the market. "The zinc-air battery provides a potential alternative battery technology with advantages such as environmental friendliness, high safety and low costs", emphasises Sun. "This technology still requires further, intensive research and optimisation before its practical application."
INFORMATION:
Original Publication:
Sun W, Wang F, Zhang B, Zhang M, Küpers V, Ji X, Theile C, Bieker P, Xu K, Wang C, Winter M, 2021, 'A rechargeable zinc-air battery based on zinc peroxide chemistry', Science 01 Jan 2021: Vol. 371, Issue 6524, pp. 46-51, DOI: 10.1126/science.abb9554
[Attachments] See images for this press release:
ELSE PRESS RELEASES FROM THIS DATE:
2021-01-04
December 31, 2020 - Data on COVID-19 transmission among Chicago youth - particularly in the city's extensive network of Catholic schools - supports a strategy for gradual reopening of the city's public school system, according to a report in the Journal of Public Health Management and Practice. The journal is published in the Lippincott portfolio by Wolters Kluwer.
"Data from the nation's largest Catholic school system reveals that implementation of layered mitigation efforts can support the goal of reopening in-person education in a safe but not zero-risk environment," write Marielle Fricchione, MD, and colleagues of the Chicago Department of Public Health (CDPH). Based ...
2021-01-04
CORVALLIS, Ore. -- A pair of recent studies from Oregon State University found that Oregon's Medicaid expansion in 2014 has led to increased prenatal care among low-income women, as well as improved health outcomes for newborn babies.
In the three years after the expansion, one study found that Oregon saw an almost 2 percentage point increase in first trimester prenatal care utilization, relative to 18% of the pre-expansion population who lacked any access to prenatal care in the earlier stages of pregnancy.
In the same period, the second study found, Medicaid expansion was associated with a 29% reduction in low birthweight among babies born to women on Medicaid, ...
2021-01-04
By applying statistical geometry to analyzing urban road networks, KAUST researchers have advanced understanding of how wireless charging roads might influence driver behavior and city planning in a future where electric vehicles (EVs) dominate the car market.
"Our work is motivated by the global trend of moving towards green transportation and EVs," says postdoc Mustafa Kishk. "Efficient dynamic charging systems, such as wireless power transfer systems installed under roads, are being developed by researchers and technology companies around the world as a way to charge EVs while driving without the need ...
2021-01-04
VANCOUVER, Wash. --People dreaming of travel post-COVID-19 now have some scientific data to support their wanderlust.
A new study in the journal of Tourism Analysis shows frequent travelers are happier with their lives than people who don't travel at all.
Chun-Chu (Bamboo) Chen, an assistant professor in the School of Hospitality Business Management at Washington State University, conducted a survey to find out why some individuals travel more frequently than others and whether or not travel and tourism experiences have a prolonged effect on happiness and wellness.
The results of his analysis show individuals who pay more attention to tourism-related information and frequently discuss their travel plans ...
2021-01-04
San Antonio, Texas (January 4, 2020) - Scientists at Texas Biomedical Research Institute (Texas Biomed) and Southwest National Primate Research Center (SNPRC) published their findings regarding a comprehensive animal model study of SARS-CoV-2 in the peer-reviewed journal Nature Microbiology. These findings were originally posted online in BioRxiv in June of 2020. The study evaluated three nonhuman primate (NHP) species (Indian rhesus macaques, African baboons and new-world origin common marmosets) and young and old animals, to determine susceptibility to the SARS-CoV-2 virus and the development of COVID-19 disease. Over the course of the study, the macaque and baboon ...
2021-01-04
TAMPA, Fla (Jan 4, 2021) -- Despite the progress made in managing asthma and chronic obstructive pulmonary disease (COPD), poorly controlled symptoms for both respiratory diseases can lead to severe shortness of breath, hospitalizations or even death.
"Only about 50 percent of asthmatics, and an even lower percentage of people with COPD, achieve adequate control of lung inflammation and airway constriction with currently available medications," said END ...
2021-01-04
There has been frequent occurrence of red tide in coastal waters around Korea where the sea turns red. Red tide is a phenomenon in which phytoplankton proliferate as nutrient or sewage flow into seawater, making it appear red. This not only causes damage to the fisheries industry but also affects the marine ecosystem.
Professor Kitack Lee and Ph.D. candidate Ji-Young Moon (first author) of POSTECH's Division of Environmental Science and Engineering have confirmed that the inflow of nitrogen pollutants since the 1980s has disturbed the nutrient balance in the northeast Asian waters and is changing the species of phytoplankton responsible for red tide. The team also found that the ...
2021-01-04
A team of researchers from the National University of Singapore (NUS) has created a novel film that is very effective in evaporating sweat from our skin to keep us cool and comfortable when we exercise, and the moisture harvested from human sweat can be used to power wearable electronic devices such as watches, fitness trackers, and more.
Sweating is a natural process for our body to reduce thermal stress. "Sweat is mostly composed of water. When water is evaporated from the skin surface, it lowers the skin temperature and we feel cooler. In our new invention, we created a novel film that is extremely effective in evaporating ...
2021-01-04
Real-life applications like magnetometry or quantum gyroscope typically involve precise measurement on multiple parameters. How to achieve the ultimate precision limits simultaneously is a long sought-after grail in the field.
It is widely believed that the ultimate precision limits for all parameters cannot be achieved simultaneously, since generators of different parameters are generally non-commuting, which induces the trade-offs among the precisions.
Yet such trade-offs are escaped from by the group of Prof. LI Chuanfeng and Prof. XIANG Guoyong from Key Laboratory of Quantum Information at University of Science and ...
2021-01-04
Researchers have found a novel way to identify heat-stressed corals, which could help scientists pinpoint the coral species that need protection from warming ocean waters linked to climate change, according to a Rutgers-led study.
"This is similar to a blood test to assess human health," said senior author Debashish Bhattacharya, a Distinguished Professor in the Department of Biochemistry and Microbiology in the School of Environmental and Biological Sciences at Rutgers University-New Brunswick. "We can assess coral health by measuring the metabolites (chemicals created for metabolism) they produce and, ultimately, identify the best interventions to ensure reef health. Coral bleaching from warming ...
LAST 30 PRESS RELEASES:
[Press-News.org] Innovative battery chemistry revolutionizes zinc-air battery
International Research Cooperation for Sustainable Batteries of the Future; publication in the Journal 'Science'