(Press-News.org) By Elton Alisson | Agência FAPESP - Melatonin synthesized in the lungs acts as a barrier against SARS-CoV-2, preventing expression of genes that encode proteins in cells such as resident macrophages in the nose and pulmonary alveoli, and epithelial cells lining the alveoli, all of which are entry points for the virus. The hormone, therefore, prevents infection of these cells by the virus and inhibits the immune response so that the virus remains in the respiratory tract for a few days, eventually leaving to find another host.
The discovery by researchers at the University of São Paulo (USP), in Brazil, helps understand why some people are not infected or do not manifest symptoms of COVID-19 even when reliably diagnosed as carriers of the virus by RT-PCR. In addition, it offers the prospect of nasal administration of melatonin, in drops or as a spray, to prevent disease from developing in pre-symptomatic patients.
Pre-clinical and clinical trials will be needed to prove the therapeutic efficacy of melatonin against the virus, the researchers stress in an article on the study published in the journal Melatonin Research.
The study was supported by FAPESP.
"We showed that melatonin produced in the lung acts as a barrier against SARS-CoV-2, preventing the virus from entering the epithelium, activating the immune system and triggering the production of antibodies," Regina Pekelmann Markus, a professor at USP's Institute of Biosciences (IB) and principal investigator for the project, told Agência FAPESP.
"This action mechanism by pulmonary melatonin must also involve other respiratory viruses such as influenza," she added.
Markus began researching melatonin in the 1990s. In a study involving rodents, she showed that the hormone, produced at night by the pineal gland in the brain to tell the organism daylight has gone and it should prepare for sleep, can be produced in other organs, such as the lungs.
In a study also involving rodents, published in early 2020 in the Journal of Pineal Research, Markus and collaborators showed that resident macrophages in the pulmonary airspace absorb (phagocytize) particles of pollution. This aggressive stimulus induced the production of melatonin and other molecules by the macrophages, engulfing the particulate matter in the air breathed in by the animals and stimulating mucous formation, coughing, and expectoration to expel the particles from the respiratory tract.
When they blocked melatonin synthesis by resident macrophages, the researchers observed that the particles entered the bloodstream and spread throughout the organism, even invading the brain.
Based on the finding that melatonin produced in the lungs altered the entry points for particulate matter from air pollution, Markus and collaborators decided to investigate whether the hormone performed the same function with regard to SARS-CoV-2. "If so, the virus wouldn't be able to bind to the ACE-2 receptor on cells, enter the epithelium and infect the organism," Markus said.
Analysis of gene expression
To test this hypothesis, the researchers analyzed 455 genes associated in the literature with COVID-19 comorbidities, interaction between SARS-CoV-2 and human proteins, and viral entry points. The genes had been identified in studies conducted, among others, by Helder Nakaya, a professor at USP's School of Pharmaceutical Sciences (FCF) and a co-author of the study on lung melatonin.
From this group of genes, they selected 212 genes involved in viral cell entry, intracellular traffic, mitochondrial activity, and transcription and post-translation processes, to create a physiological signature of COVID-19.
Using RNA sequencing data downloaded from a public database, they quantified the level of expression of the 212 COVID-19 signature genes in 288 samples from healthy human lungs.
They then correlated these gene expression levels with a gene index that estimated the capacity of the lungs to synthesize melatonin (MEL-Index), based on their analysis of the lungs in healthy rodents. They found that the lower the index the higher the level of expression of genes that encode proteins for resident macrophages and epithelial cells.
The index also correlated negatively with genes that modify proteins in cell receptor CD147, a viral entry point in macrophages and other immune cells, indicating that normal lung melatonin production may be a natural protector against the virus.
The results were corroborated by three statistical techniques: the Pearson test, which measures the degree of linear correlation between two variables; a gene set enrichment analysis; and a network analysis tool that maps the connections among the most expressed genes so as to compare the same set of genes in different states. The latter was developed by Marcos Buckeridge, a professor at IB-USP and also a co-author of the study.
"We found that when MEL-Index was high the entry points for the virus in the lungs were closed, and when it was low these 'doors' were open. When the doors are shut, the virus wanders around for a time in the pulmonary airspace and then tries to escape in search of another host," Markus said.
Because lung melatonin inhibits transcription of these genes that encode proteins for viral entry point cells, application of melatonin directly into the lungs in the form of drops or spray could block the virus. More research is required to prove that this is indeed the case, however, the researchers note.
Another idea could be to use MEL-Index, the pulmonary melatonin metric, as a prognostic biomarker to detect asymptomatic carriers of SARS-CoV-2.
INFORMATION:
About São Paulo Research Foundation (FAPESP)
The São Paulo Research Foundation (FAPESP) is a public institution with the mission of supporting scientific research in all fields of knowledge by awarding scholarships, fellowships and grants to investigators linked with higher education and research institutions in the State of São Paulo, Brazil. FAPESP is aware that the very best research can only be done by working with the best researchers internationally. Therefore, it has established partnerships with funding agencies, higher education, private companies, and research organizations in other countries known for the quality of their research and has been encouraging scientists funded by its grants to further develop their international collaboration. You can learn more about FAPESP at http://www.fapesp.br/en and visit FAPESP news agency at http://www.agencia.fapesp.br/en to keep updated with the latest scientific breakthroughs FAPESP helps achieve through its many programs, awards and research centers. You may also subscribe to FAPESP news agency at http://agencia.fapesp.br/subscribe.
A study led by a University of Illinois Chicago researcher uses a new approach to measure precarious, or low-quality, employment in the United States. And, according to those findings, precarious employment has increased 9% between 1988 and 2016.
Precarious employment, or P.E., is defined as low-quality employment, which is often characterized by low wages, job insecurity and irregular hours, making employment risky and stressful for the worker.
In her study, "Changes in precarious employment in the United States: A longitudinal analysis," Vanessa Oddo, assistant professor in UIC's School of Applied Health Sciences, sought to create ...
People who are pregnant, breastfeeding or trying to conceive should be offered the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccine based on ethical grounds, argue authors of a commentary in CMAJ (Canadian Medical Association Journal).
They discuss how health care providers and patients can use a shared decision-making approach to weigh the risks and benefits to decide on the right action for the individual.
"Core principles of medical ethics hold that medical decisions or interventions should respect individuals' autonomy, be just, be beneficial (beneficence), and not cause harm (nonmaleficence)," writes Dr. Jonathan Zipursky, Sunnybrook Health Sciences Centre and the University ...
Benoît Lessard and his team are developing carbon-based technologies which could lead to improved flexible phone displays, make robotic skin more sensitive and allow for wearable electronics that could monitor the physical health of athletes in real-time.
With the help of the Canadian Light Source (CLS) at the University of Saskatchewan (USask), a team of Canadian and international scientists have evaluated how thin film structure correlates to organic thin-film transistors performance.
Organic electronics use carbon-based molecules to create more flexible and efficient devices. The display of our smart phones is based on organic-LED technology, which uses organic molecules to emit bright light and others to respond to touch.
Lessard, the corresponding author ...
HOUSTON - (Jan. 27, 2021) - Just a little soap helps clean up the challenging process of preparing two-dimensional hexagonal boron nitride (hBN).
Rice University chemists have found a way to get the maximum amount of quality 2D hBN nanosheets from its natural bulk form by processing it with surfactant (aka soap) and water. The surfactant surrounds and stabilizes the microscopic flakes, preserving their properties.
Experiments by the lab of Rice chemist Angel Martí identified the "sweet spot" for making stable dispersions of hBN, which can be processed into very thin antibacterial films that handle temperatures up to 900 degrees Celsius (1,652 degrees Fahrenheit).
The work led by Martí, alumna Ashleigh Smith McWilliams and graduate student Cecilia Martínez-Jiménez ...
For the last century, seismic building codes and practices have primarily focused on saving lives by reducing the likelihood of significant damage or structural collapse. Recovery of critical functions provided by buildings and infrastructure have received less attention, however. As a result, many remain vulnerable to being knocked out of service by an earthquake for months, years or for good.
A committee of experts, formed by the National Institute of Standards and Technology (NIST) and the Federal Emergency Management Agency (FEMA) under the direction of Congress, has urged officials at all levels of government to support research and policies that could help get the buildings and services society depends on up and running quickly after an earthquake. In a report delivered to ...
The rapid growth of e-cigarette use is a major public health problem in the United States - with significant attention on use among adolescents and young adults. Although manufacturers of e-cigarettes tout their products as safer alternatives to cigarette smoking, research has shown that e-cigarettes can be as hazardous as traditional tobacco products but appeal to those who were never cigarette smokers.
In the first study to assess national use of e-cigarettes among adults with disabilities, George Mason University's College of Health and Human Services researchers found that adults with disabilities were twice as likely to use e-cigarettes (8.4%) than adults without ...
Despite all the advances in consumer technology over the past decades, one component has remained frustratingly stagnant: the optical lens. Unlike electronic devices, which have gotten smaller and more efficient over the years, the design and underlying physics of today's optical lenses haven't changed much in about 3,000 years.
This challenge has caused a bottleneck in the development of next-generation optical systems such as wearable displays for virtual reality, which require compact, lightweight, and cost-effective components.
At the Harvard John A. Paulson School of Engineering and Applied Sciences ...
In 2016, a team led by UCLA's Martin Monti reported that a 25-year-old man recovering from a coma had made remarkable progress following a treatment to jump-start his brain using ultrasound.
Wired U.K. called the news one of the best things that happened in 2016. At the time, Monti acknowledged that although he was encouraged by the outcome, it was possible the scientists had gotten a little lucky.
Now, Monti and colleagues report that two more patients with severe brain injuries -- both had been in what scientists call a long-term "minimally conscious state" -- have made impressive progress thanks to the same technique. The results are published ...
LOS ALAMOS, N.M., January 27, 2021--A new 3D analysis shows that wildland fires flare up in forests populated by similar-sized trees or checkerboarded by large clearings and slow down where trees are more varied. The research can help fire managers better understand the physics and dynamics of fire to improve fire-behavior forecasts.
"We knew fuel arrangement affected fire but we didn't know how," said Adam Atchley, lead author on a Los Alamos National Laboratory-led study published today in the International Journal of Wildland Fire. "Traditional models ...
Imagine a 7-year-old and a college student both take a break from their virtual classes to get a drink of water. When they return, the 7-year-old has difficulty restarting the assignment, while the college student resumes working as if the break never occurred. Nelson Cowan, an expert in working memory at the University of Missouri, believes understanding this developmental age difference can help younger children and their parents to better adjust to a virtual learning environment during the COVID-19 pandemic.
"By understanding this developmental difference, then we can work to provide a little more structure for younger children in online settings, such as helping them organize their homework," said Cowan, ...