Synthetic biology reinvents development
The research team have used synthetic biology to develop a new type of genetic design that can reproduce some of the key processes that enable creating structures in natural systems, from termite nests to the development of embryos.
2021-02-01
(Press-News.org) Richard Feynman, one of the most respected physicists of the twentieth century, said "What I cannot create, I do not understand". Not surprisingly, many physicists and mathematicians have observed fundamental biological processes with the aim of precisely identifying the minimum ingredients that could generate them. One such example are the patterns of nature observed by Alan Turing. The brilliant English mathematician demonstrated in 1952 that it was possible to explain how a completely homogeneous tissue could be used to create a complex embryo, and he did so using one of the simplest, most elegant mathematical models ever written. One of the results of such models is that the symmetry shown by a cell or a tissue can "break" under a set of conditions. However, Turing was not able to test his ideas, and it took over 70 years before a breakthrough in biology technique was able to evaluate them decisively. Can Turing's dream be made a reality through Feynman's proposal? Genetic engineering has proved it can.
Now, a research team from the Institute of Evolutionary Biology (IBE), a joint centre of UPF and the Spanish National Research Council (CSIC), has developed a new type of model and its implementation using synthetic biology can reproduce the symmetry breakage observed in embryos with the minimum amount of ingredients possible.
The research team has managed to implement via synthetic biology (by introducing parts of genes of other species into the E. coli bacteria) a mechanism to generate spatial patterns observed in more complex animals, such as Drosophila melanogaster (fruit fly) or humans. In the study, the team observed that the strains of modified E. coli, which normally grow in (symmetrical) circular patterns, do as in the shape of a flower with petals at regular intervals, just as Turing had predicted.
"We wanted to build symmetry breaking that is never seen in colonies of E. coli, but is seen in patterns of animals, and then to discover which are the essential ingredients needed to generate these patterns", says Salva Duran-Nebreda, who conducted this research for his doctorate in the Complex Systems laboratory and is currently a postdoctoral researcher at the IBE Evolution of Technology laboratory.
Using the new synthetic platform, the research team was able to identify the parameters that modulate the emergence of spatial patterns in E. coli . "We have seen that by modulating three ingredients we can induce symmetry breaking. In essence, we have altered cell division, adhesion between cells and long-distance communication capacity (quorum sensing), that is to say, perceive when there is a collective decision", Duran-Nebreda comments.
The observations made in the E. coli model could be applied to more complex animal models or to insect colony design principles. "In the same way that organoids or miniature organs can help us develop therapies without having to resort to animal models, this synthetic system paves the way to understanding as universal a phenomenon as embryonic development in a far simpler in vitro system", says Ricard Solé, ICREA researcher with the Complex Systems group at the IBE, and head of the research.
The model developed in this study, the first of its kind, could be key to understanding some embryonic development events. "We must think of this synthetic system as a platform for learning to design different fundamental biological mechanisms that generate structures, such as the step from a zygote to the formation of a complete organism. Moreover, such knowledge on the frontier between mechanical and biological processes, could be very useful for understanding developmental disorders", Duran-Nebreda concludes.
INFORMATION:
Reference article:
Duran-Nebreda S, Pla J, Vidiella B, Piñero J, Conde-Pueyo N, Solé R. Synthetic Lateral Inhibition in Periodic Pattern Forming Microbial Colonies. ACS Synth. Biol. 2021. https://doi.org/10.1021/acssynbio.0c00318.
ELSE PRESS RELEASES FROM THIS DATE:
2021-02-01
Theoretical physicists of the PRISMA+ Cluster of Excellence at Johannes Gutenberg University Mainz are working on a theory that goes beyond the Standard Model of particle physics and can answer questions where the Standard Model has to pass - for example, with respect to the hierarchies of the masses of elementary particles or the existence of dark matter. The central element of the theory is an extra dimension in spacetime. Until now, scientists have faced the problem that the predictions of their theory could not be tested experimentally. They have now overcome this problem in a publication in the current issue of the European Physical Journal C.
Already in the 1920s, in an attempt to unify the forces of gravity and electromagnetism, Theodor Kaluza and Oskar Klein speculated ...
2021-02-01
PHILADELPHIA--Scientists in the Perelman School of Medicine at the University of Pennsylvania have uncovered the molecular causes of a congenital form of dilated cardiomyopathy (DCM), an often-fatal heart disorder.
This inherited form of DCM -- which affects at least several thousand people in the United States at any one time and often causes sudden death or progressive heart failure -- is one of multiple congenital disorders known to be caused by inherited mutations in a gene called LMNA. The LMNA gene is active in most cell types, and researchers have ...
2021-02-01
What The Study Did: Researchers used near real-time social media data to capture the public's changing COVID-19-related attitudes when former President Trump was infected.
Authors: Sean D. Young, Ph.D., of the University of California, Irvine, is the corresponding author.
To access the embargoed study: Visit our For The Media website at this link https://media.jamanetwork.com/
(doi:10.1001/jamanetworkopen.2021.0101)
Editor's Note: The article includes conflict of interest and funding/support disclosures. Please see the article for additional ...
2021-02-01
What The Study Did: Researchers looked at changes in the rate of deaths associated with the use of illicit (such as cocaine) and medical stimulants in the United States from 2010 to 2017.
Authors: Joshua C. Black, Ph.D., of Rocky Mountain Poison & Drug Safety in Denver, is the corresponding author.
To access the embargoed study: Visit our For The Media website at this link https://media.jamanetwork.com/
(doi:10.1001/jamainternmed.2020.7850)
Editor's Note: The article includes conflicts of interest and funding/support disclosures. Please see the article for additional information, including other authors, author contributions and affiliations, conflict of interest and financial ...
2021-02-01
What The Study Did: This report summarizes frequency and patterns of concussions and repetitive head impacts over the course of several seasons among college football players who wore sensors in their helmets.
Authors: Michael McCrea, Ph.D., of the Medical College of Wisconsin in Milwaukee, is the corresponding author.
To access the embargoed study: Visit our For The Media website at this link https://media.jamanetwork.com/
(doi:10.1001/jamaneurol.2020.5193)
Editor's Note: The article includes conflicts of interest and funding/support disclosures. Please see the article for additional information, including other authors, author contributions and affiliations, conflict of interest ...
2021-02-01
For the first time, scientists have calculated the global impact of human activity on animal movement, revealing widespread impacts that threaten species survival and biodiversity.
While it has been shown that activities such as logging and urbanisation can have big impacts on wildlife, the study by scientists at the University of Sydney and Deakin University in Australia shows that episodic events such as hunting, military activity and recreation can trigger even bigger changes in animal behaviour.
"It is vital we understand the scale of impact that humans have on other animal species," said lead author Dr Tim Doherty, a wildlife ecologist at the University of Sydney. "The consequences of changed animal movement can be profound and lead to reduced ...
2021-02-01
When two sheets of graphene are stacked atop each other at just the right angle, the layered structure morphs into an unconventional superconductor, allowing electric currents to pass through without resistance or wasted energy.
This "magic-angle" transformation in bilayer graphene was observed for the first time in 2018 in the group of Pablo Jarillo-Herrero, the Cecil and Ida Green Professor of Physics at MIT. Since then, scientists have searched for other materials that can be similarly twisted into superconductivity, in the emerging field of "twistronics." For the most part, no other twisted material has exhibited superconductivity other than the original twisted bilayer ...
2021-02-01
An intelligent material that learns by physically changing itself, similar to how the human brain works, could be the foundation of a completely new generation of computers. Radboud physicists working toward this so-called "quantum brain" have made an important step. They have demonstrated that they can pattern and interconnect a network of single atoms, and mimic the autonomous behaviour of neurons and synapses in a brain. They report their discovery in Nature Nanotechnology on 1 February.
Considering the growing global demand for computing capacity, more and more data centres are necessary, all of which leave an ever-expanding energy footprint. 'It is clear that ...
2021-02-01
The Milky Way is surrounded by dozens of dwarf galaxies that are thought to be relics of the very first galaxies in the universe. Among the most primitive of these galactic fossils is Tucana II -- an ultrafaint dwarf galaxy that is about 50 kiloparsecs, or 163,000 light years, from Earth.
Now MIT astrophysicists have detected stars at the edge of Tucana II, in a configuration that is surprisingly far from its center but nevertheless caught up in the tiny galaxy's gravitational pull. This is the first evidence that Tucana II hosts an extended dark matter halo ...
2021-02-01
Millions of patients suffering from neurological and mental disorders such as depression, addiction, and chronic pain are treatment-resistant. In fact, about 30% of all major depression patients do not respond at all to any medication or psychotherapy. Simply put, many traditional forms of treatment for these disorders may have reached their limit. Where do we go from here?
Research to be published in Nature Biomedical Engineering led by Maryam Shanechi, the Andrew and Erna Viterbi Early Career Chair in electrical and computer engineering at the USC Viterbi School of Engineering, ...
LAST 30 PRESS RELEASES:
[Press-News.org] Synthetic biology reinvents development
The research team have used synthetic biology to develop a new type of genetic design that can reproduce some of the key processes that enable creating structures in natural systems, from termite nests to the development of embryos.