(Press-News.org) During the past 25 years astronomers have discovered a wide variety of exoplanets, made of rock, ice and gas, thanks to the construction of astronomical instruments designed specifically for planet searches. Also, using a combination of different observing techniques they have been able to determine a large numher of masses, sizes, and hence densities of the planets, which helps them to estimate their internal composition and raising the number of planets which have been discovered outside the Solar System.
However, to study the atmospheres of the rocky planets, which would made it possible to characterize fully those exoplanets which are similar to Earth, is extremely difficult with currently available instruments. For that reason, the atmospheric models for rocky planets are still not tested.
So it is interesting that the astronomers in the CARMENES (Calar Alto high- Resolution search for M dwarfs with Exoearths with Near-infrared and optical échelle Spectrographs), consortium in which the Instituto de Astrofisica de Canarias (IAC) is a partner, have recently published a study, led by Trifon Trifonov, an astronomer at the Max Planck Institute for Astronomy at Heidelberg (Germany), about the discovery of a hot super-Earth in orbit around a nearby red dwarf star Gliese 486, only 26 light years from the Sun.
To do this the scientists used the combined techniques of transit photometry and radial velocity spectroscopy, and used, among others, observations with the instrument MuSCAT2 (Multicolour Simultaneous Camera for studying Atmospheres of Transiting exoplanets) on the 1.52m Carlos Sánchez Telescope at the Teide Observatory. The results of this study have been published in the journal Science.
The planet they discovered, named Gliese 486b, has a mass 2.8 times that of the Earth, and is only 30% bigger. "Calculating its mean density from the measurements of its mass and radius we infer that its composition is similar to that of Venus or the Earth, which have metallic nuclei inside them", explains Enric Pallé, an IAC researcher and a co-author of the article.
Gliese 486b orbits its host star on a circular path every 1.5 days, at a distance of 2.5 million kilometres. In spite of being so near to its star, the planet has probably conserved part of its original atmosphere (the star is much cooler than our Sun) so that it is a good candidate to observe in more detail with the next generation of space and ground telescopes.
For Trifonov, "the fact that this planet is so near the sun is exciting because it will be possible to study it in more detail using powerful telescopes such as the iminent James Webb Space Telescope and the ELT (Extremely Large Telescope) now being built".
Gliese 486b takes the same length of time to spin on its axis as to orbit its host star, so that it always has the same side facing the star. Although Gliese 486 is much fainter and cooler than the Sun, the radiation is so intense that the surface of the planet heats up to at least 700K (some 430 degrees C). Because of this, the suface of Gliese 486b is probably more like the surface of Venus that that of the Earth, with a hot dry landscape, with burning rivers of lava. However, unlike Venus, Gliese 486b may have a thin atmosphere.
Calculations made with existing models of planetary atmospheres can be consistent with both hot surface and thin atmosphere scenarios because stellar irradiation tends to evaporate the atmosphere, while the planet's gravity tends to hold it back. Determining the balance between the two contributions is difficult today.
"The discovery of Gliese 486b has been a stroke of luck. If it had been around a hundred degrees hotter all its surface would be lava, and its atmosphere would be vaporized rock", explains José Antonio Caballero, a researcher at the Astrobiology Centre (CAB, CSIC-INTA) and co-author of the article. "On the other hand, if Gliese 486b had been around a hundred degrees cooler, it would not have been suitable for the follow-up observations".
Future planned observations by the CARMENES team will try to determine its orbital inclination, which makes it possible for Gliese 486b to cross the line of sight between us and the surface of the star, oculting some of its light, and producing what are known as transits.
They will also make spectroscopic measurements, using "emission spectroscopy", when the areas of the hemisphere lit up by the star are visible as phases of the planet (analagous to the phases of our Moon), during the orbits of Gliese 486b, befor it disappears behind the star. The spectrum observed will contain information about the conditions on the illuminated hot surface of the planet.
"We can't wait until the new telescopes are available", admits Trifonov. "The results we may obtain with them will help us to get a better understanding of the atmospheres of rocky planets, their extensión, their very high density, their composition, and their influence in distributing energy around the planets.
The CARMENES project, whose consortium is made up by 11 research institutions in Spain and Germany, has the aim of monitoring a set of 350 red dwarf stars to seek planets like the Earth, using a spectrograph on the 3.5 m telescope at the Calar Alto Observatory (Spain). The present study has also used spectroscopic measurements to infer the mass of Gliese 486b. Observations were made with the MAROON-X instrument on Gemini North (8.1m) in the USA, and archive data were taken from the Keck 10 m telescope (USA) and the 3.6m telescope of ESO, (Chile).
The photometric observations come from NASA's TESS (Transiting Exoplanet Survey Satellite) space observatory, (USA), whose data were basic for obtaining the radius of the planet, from the MuSCAT2 instrument on the 1.52m Carlos Sánchez Telescope at the Teide Observatory (Spain) and from the LCOGT (Las Cumbres Observational Global Telescope) in Chile, among others.
INFORMATION:
Article:
T. Trifonov et al. "A nearby transiting rocky exoplanet that is suitable for atmospheric investigation", Science, March 4, 2021.
Links of interest:
- CARMENES consortium: https://carmenes.caha.es
- MAROON-X instrument: https://www.gemini.edu/instrumentation/maroon-x/
- TESS Exoplanet Mission: https://www.nasa.gov/tess-transiting-exoplanet-survey-satellite
Forager ants do it, vampire bats do it, guppies do it, and mandrills do it. Long before humans learned about and started "social distancing due to COVID-19," animals in nature intuitively practiced social distancing when one of their own became sick.
In a new review published in Science, Dana Hawley, a professor of biological sciences in the Virginia Tech College of Science and colleagues from the University of Texas at Austin, University of Bristol, University of Texas at San Antonio, and University of Connecticut have highlighted just a few of the many non-human species that practice social distancing, as well as lessons learned from their methods to stop the spread ...
Commercially available gene tests that shed light on individual's origins are popular. They provide an estimate of the geographic regions where one's ancestors come from. To arrive at such an estimate, the genetic information of an individual is compared to information pertaining to reference groups collected from around the world.
The findings now made by researchers from the University of Helsinki, Aalto University and the Finnish Institute for Health and Welfare make it possible, for the first time, to make similar comparisons within Finland.
A research group at the University ...
Many cognitive neurodevelopmental disorders are a result of too many or too few copies of certain genes or chromosomes. To date, no treatment options exist for this class of disorders. MECP2 duplication syndrome (MDS) is one such disorder that primarily affects boys and results from a duplication spanning the methyl-CpG binding protein 2 (MECP2) locus located on the X chromosome.
A preclinical study published from the laboratory of Dr. Huda Zoghbi, professor at Baylor College of Medicine and director of the Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, provides experimental evidence that supports the use of antisense oligonucleotides as a feasible strategy to treat MDS. The study also offers crucial ...
Observations of galactic rotation curves give one of the strongest lines of evidence pointing towards the existence of dark matter, a non-baryonic form of matter that makes up an estimated 85% of the matter in the observable Universe. Current assessments of galactic rotation curves are based upon a framework of Newtonian accounts of gravity, a new paper published in EPJ C, by Gerson Otto Ludwig, National Institute for Space Research, Brazil, suggests that if this is substituted with a general relativity-based model, the need to recourse to dark ...
The drug nusinersen is approved for the treatment of 5q spinal muscular atrophy (SMA). The German Institute for Quality and Efficiency in Health Care (IQWiG) has now examined in an early benefit assessment whether the drug offers an added benefit for patients in comparison with the appropriate comparator therapy.
According to the findings, there is an indication of a major added benefit in comparison with best supportive care (BSC) in children with early onset of disease (in the first six months of life). The drug manufacturer did not submit any relevant data for children with a later onset of disease, so that an added benefit in comparison with BSC is not proven here. For infants who are not yet symptomatic but are expected to have early onset ...
In recent years, researchers have begun using functional magnetic resonance imaging (fMRI) not just for better understanding the neural bases of psychiatric illness, but also for experimental treatment of depression, ADHD, anxiety, PTSD, substance use disorder, and schizophrenia with a technique called real-time fMRI neurofeedback.
While rtfMRI-NF has emerged in recent years as a promising experimental intervention, it's also a costly procedure that requires extensive technical setup to allow for real-time analysis. That's why a quantitative data review was overdue.
A team of END ...
Texas A&M University researchers have recently shown superior performance of a new oxide dispersion strengthened (ODS) alloy they developed for use in both fission and fusion reactors.
Dr. Lin Shao, professor in the Department of Nuclear Engineering, worked alongside research scientists at the Los Alamos National Laboratory and Hokkaido University to create the next generation of high-performance ODS alloys, and so far they are some of the strongest and best-developed metals in the field.
ODS alloys consist of a combination of metals interspersed with small, nanometer-sized oxide particles and are known for their high creep resistance. This means that as temperatures rise, the materials keep ...
Researchers at Baylor College of Medicine show that analysis of the proteomics, or all the protein data, from aggressive human cancers is a useful approach to identify potential novel therapeutic targets. They report in the journal Oncogene, the identification of "proteomic signatures" that are associated with clinical measures of aggressive disease for each of the seven cancer types studied. Some signatures were shared between different types of cancer and included cellular pathways of altered metabolism. Importantly, experimental results provided proof-of-concept that their proteomics analysis approach is a valuable strategy to identify potential therapeutic targets.
"There are two notable aspects of this study. One is that ...
If you dunk a tea bag repeatedly into your mug or open a cream-filled cookie to lick the filling, you might find coping with pandemic isolation a bit easier than others.
A UC Riverside-led study has found people who adopt unique rituals to make everyday tasks more meaningful might feel less lonely.
"We found that something as simple as preparing tea in a certain way, as long as it's interpreted as a ritual, can make the experience more meaningful," said Thomas Kramer, a professor of marketing at UC Riverside's School of Business. "This makes people feel less lonely."
The paper, published ...
Parkinson's disease has always been considered a brain disorder. However, new research reveals a close link between the disease and certain immune cells in the blood.
Researchers from Aarhus University have taken the first step on a path which can lead to new ways of understanding and, in the long term, possibly treating this widespread disease that affects not only motor functions but also cognition and emotions.
"We know that Parkinson's disease is characterized by an inflammation in the brain, and that this is crucial for the progression of the disease. But in the study, our interest has been focused on the immune cells found outside the brain," explains Marina Romero-Ramos, who is associate professor at the Department of Biomedicine at Aarhus University.
The researchers ...